КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Напряжения поверхностных сил
Поверхностные силы, действующие в движущихся сплошных средах, существенно отличаются от поверхностных сил, действующих в покоящейся среде. Это отличие заключается не только в появлении касательных составляющих, которые в покоящейся жидкости отсутствуют, а также и в том, что нормальные составляющие сил изменяют свою величину. Найдем величины, определяющие поверхностные напряжения в некоторой точке сплошной среды. Для этого рассмотрим в движущейся жидкости элементарный тетраэдр с вершиной в точке О (рис. 4.2). Рис. 4.2. Расчетная схема элементарного тетраэдра
Площади боковых граней тетраэдра равны , причем индексы означают ось, перпендикулярно которой расположена грань. Наклонная грань имеет площадь, равную ; n - нормаль к этой грани. К каждой из рассматриваемых граней будут приложены поверхностные силы, в общем случае направленные под некоторым углом к грани. Обозначим вектор напряжения поверхностных сил, приложенных к грани, перпендикулярной оси х, через соответственно к граням, нормальным к осям у и z, через и . К наклонной грани приложено напряжение . Как видно из рис. 4.2 ; ; (4.7) . Второй индекс у проекций напряжений означает ось, на которую проектируются векторы напряжений , и . Зная , и , можно определить вектор поверхностных сил , приложенный к площадке с любым заданным направлением орта нормали n. Действительно, написав уравнение движения центра инерции тетраэдра с массой dm, получим , (4.8) где - скорость центра инерции тетраэдра; F - плотность массовых сил. Члены в уравнении, содержащие элементарную массу, являются величинами третьего порядка малости, в то время как остальные - второго порядка малости. Поэтому величинами, содержащими dm, пренебрегаем. Получим . (4.9) Из рис. 4.2 видно, что ; ; (4.10) , поэтому , (4.11) где ; ; (4.12) . Можно получить проекции вектора напряжений поверхностных сил, приложенных к площадке с любым заданным направлением n, на координатные оси х, у и z: ; ; (4.13) ; Напряжение в точке определяется совокупностью величин . (4.14) Таблица величин, определяющих напряженное состояние в точке, называется тензором напряжений. Составляющие будем называть компонентами тензора напряжений или просто компонентами напряжений.
Дата добавления: 2014-10-31; Просмотров: 678; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |