КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегрирование некоторых иррациональных функций
Интегрирование тригонометрических функций Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби. Теорема: Если - правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P(x) = (x - a)a…(x - b)b(x2 + px + q)l…(x2 + rx + s)m ), то эта дробь может быть разложена на элементарные по следующей схеме:
где Ai, Bi, Mi, Ni, Ri, Si – некоторые постоянные величины. При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х. Пример.
Т.к. ( , то
Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:
Итого:
// Пример.
Т.к. дробь неправильная, то предварительно следует выделить у нее целую часть: 6x5 – 8x4 – 25x3 + 20x2 – 76x – 7 3x3 – 4x2 – 17x + 6 6x5 – 8x4 – 34x3 + 12x2 2x2 + 3 9x3 + 8x2 – 76x - 7 9x3 – 12x2 – 51x +18 20x2 – 25x – 25
Разложим знаменатель полученной дроби на множители. Видно, что при х = 3 знаменатель дроби превращается в ноль. Тогда: 3x3 – 4x2 – 17x + 6 x - 3 3x3 – 9x2 3x2 + 5x - 2 5x2 – 17x 5x2 – 15x - 2x + 6 -2x + 6 Таким образом 3x3 – 4x2 – 17x + 6 = (x – 3)(3x2 + 5x – 2) = (x – 3)(x + 2)(3x – 1). Тогда:
// Для того, чтобы избежать при нахождении неопределенных коэффициентов раскрытия скобок, группировки и решения системы уравнений (которая в некоторых случаях может оказаться достаточно большой) применяют так называемый метод произвольных значений. Суть метода состоит в том, что в полученное выше выражение подставляются поочередно несколько (по числу неопределенных коэффициентов) произвольных значений х. Для упрощения вычислений принято в качестве произвольных значений принимать точки, при которых знаменатель дроби равен нулю, т.е. в нашем случае – 3, -2, 1/3. Получаем:
Окончательно получаем:
=
Пример.
Найдем неопределенные коэффициенты:
Тогда значение заданного интеграла:
Интеграл вида . Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx. Интегралы этого вида вычисляются с помощью подстановки . Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную. , Тогда Таким образом: // Описанное выше преобразование называется универсальной тригонометрической подстановкой. Пример.
Пример.
Интеграл вида если функция R является нечетной относительно cosx. применить подстановку t = sinx.
Функция может содержать cosx только в четных степенях, а следовательно, может быть преобразована в рациональную функцию относительно sinx.
Пример.
Интеграл вида если функция R является нечетной относительно sinx. делается подстановка t = cosx. Тогда Пример.
Интеграл вида функция R четная относительно sinx и cosx. Для преобразования функции R в рациональную используется подстановка t = tgx. Тогда Пример.
Интеграл произведения синусов и косинусов различных аргументов. В зависимости от типа произведения применятся одна из трех формул:
Пример.
Пример.
Иногда при интегрировании тригонометрических функций удобно использовать общеизвестные тригонометрические формулы для понижения порядка функций. Пример.
Пример.
Иногда применяются некоторые нестандартные приемы. Пример.
Итого
Интегрирование некоторых иррациональных функций. Интеграл вида где n- натуральное число. С помощью подстановки функция рационализируется.
Тогда
Пример.
Если в состав иррациональной функции входят корни различных степеней, то в качестве новой переменной рационально взять корень степени, равной наименьшему общему кратному степеней корней, входящих в выражение. Пример.
Интегрирование биноминальных дифференциалов. Определение: Биноминальным дифференциалом называется выражение xm(a + bxn)pdx где m, n, и p – рациональные числа. 1) Если р – целое число, то интеграл рационализируется с помощью подстановки , где l - общий знаменатель m и n. 2) Если - целое число, то интеграл рационализируется подстановкой , где s – знаменатель числа р. 3) Если - целое число, то используется подстановка , где s – знаменатель числа р. 4) Интегралы вида . Таким образом, интеграл приводится к одному из трех типов: 1) 2) 3)
Дата добавления: 2014-11-09; Просмотров: 915; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |