![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Прямая на плоскости. Уравнения линий на плоскости
Уравнения линий на плоскости Прямую на плоскости можно задать многими способами. При решении задач на прямую часто используются следующие типовые уравнения и соотношения: 1. Уравнения прямой с угловым коэффициентом 2. Уравнение прямой, проходящей через данную точку М (x 0, y 0) c данным угловым коэффициентом k
3. Уравнение прямой, проходящей через две данные точки M 1(x 1, y 1) и M 2(x 2, y 2)
Заметим, что в случае 4. Расстояние d от точки М 0 до прямой
5. Угол j, отсчитываемый против часовой стрелки от прямой
Из формулы следует: 1) прямые l 1 и l 2 параллельны, если 2) прямые l 1 и l 2 перпендикулярны, если 6. Уравнения биссектрис углов между прямыми
7. Точка пересечения медиан делит любую из них на части в отношении 2:1 (считая от вершины).
Пример. Даны вершины треугольника А (-3,-3), В(2,7) и С (5,1). Требуется написать уравнения сторон треугольника, определить угол А треугольника, найти уравнение медианы АК и высоты АМ.
Рис. 1. Решение. Чтобы написать уравнение стороны АВ треугольника, используем вид уравнения прямой, проходящей через две точки: AВ: Аналогично АС: СВ: Тогда тангенс угла А определяется по формуле:
Ищем уравнение медианы АК. Для этого определяем координаты точки К, учитывая, что отрезок ВС в точке К делится пополам и, следовательно, АК Ищем уравнение высоты АМ, опущенного из вершины А на сторону ВС:
Следовательно, уравнение АМ:
Дата добавления: 2014-11-09; Просмотров: 431; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |