КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение кратности собственных чисел и векторов
Вычисление собственных векторов методом Данилевского Далее для каждого собственного числа вычисляется соответствующий ему собственный вектор. Собственные вектора у подобных матриц не совпадают. Если yi – это собственный вектор матрицы P, соответствующий собственному числу λi, то xi = Syi, i = 1, 2, …, n. (2.3.11) При этом собственный вектор матрицы P выглядит следующим образом: (2.3.12) При поиске кратных корней возникают некоторые сложности. Дело в том, что если кратность корня четная, то в этой точке наблюдается экстремум (минимум или максимум) характеристического полинома, а если нечетная – то полином просто меняет знак. Пример приведен на рис. 2.3.1. Согласно определению [1], корень уравнения ξ имеет кратность k, если не только функция в точке ξ принимает нулевое значение, но и k –1 ее производных: f (i)(ξ) = 0, i = 0, 1, 2, …, k–1. (2.3.13) При i = 0 имеем саму функцию. Таким образом, получаем k нулей функции и ее производных. Рис. 2.3.1 – Поведение характеристического полинома Учитывая погрешности вычислений на ЭВМ, при четной кратности корня характеристический полином может пройти либо выше, либо ниже нулевой отметки (рис. 2.3.2). Рис. 2.3.2 – Погрешности при вычислении собственных чисел Здесь ε и δ – достаточно малые числа. Т.о., программа может либо вообще не найти корня, либо найти сразу два. Поэтому договоримся считать корнем любое число λi, для которого | f (λi)| < δ. При этом, если два корня λi1 и λi2 расположены близко друг к другу (т.е. |λi1 – λi2| < 2ε), то корнем следует считать только один из них, либо за корень принять число, расположенное между ними: λi = (λi1 + λi2)/2. (2.3.14) Поиск собственных чисел продолжается до тех пор, пока не будут найдены все, т.е. пока не выполнится условие (2.3.2).
Дата добавления: 2014-11-20; Просмотров: 627; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |