Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Указания к выполнению контрольной работы 7 страница




.

Таким образом, искомые оценки параметров линейного аренда равны: = 169,1695, = -0,2429. Уравнение линейного тренда имеет вид:

169,1695 - 0,2429· t.

3)

 
 

 
(2)
На рисунке цифрой (1) отмечен первичный ряд, цифрой (2) - скользящая трехлетняя средняя, цифрой (3) помечен ряд, выровненный по прямой.

 
 
(1)


(1)
4) Проверка согласованности линейной трендовой модели с результатами наблюдений выполняется как решение задачи проверки статистической гипотезы об отсутствии линейной статистической связи переменных и t на заданном уровне значимости α = 0,05. Для проверки гипотезы используется коэффициент детерминации и применяется статистика Фишера с и к 2 =п - 2степенями свободы.

 

В рассматриваемом случае 28209,53 - (167,955)2 = 0,648, , .

Критическое значение статистики Фишера равно

.

Так как , то выдвинутая гипотеза Hо отвергается, что свидетельствует о согласии линейной трендовой модели с результатами наблюдений.

5) По полученному уравнению линейного тренда =169,1695- 0,2429 t найдем точечные (индивидуальные) прогнозы показателя на 2002 и 2003 г.г.

Для 2002г. t = 10

166,7405.

Для 2003г. t = 11

166,4976.

Дать интервальную оценку тренда - значит указать границы интервала, в который попадет возможное значение переменной с заданной доверитель­ной вероятностью γ(в нашем примере γ= 0,95).

Этот интервал определяется по известным формулам [3]

,

где δ- точность прогноза , здесь к=п- 2- число степеней свободы, α = 1-γ, ищется по таблице критических точек распределения Стьюдента для двусторонней критической области (см., например [4]); в нашем случае α=1 - 0,95 = 0,05; к = 9-2 =7; 2,36. (Можно воспользоваться так же таблицами [3]). - исправленное среднеквадратическое отклонение (С.К.О.) индивидуальных значений зависимой переменной

.

 

Из этой формулы видно, чем больше , тем меньше точность прогноза. S - исправленное С.К.О. ошибок линейной регрессии

.

Вычисление доверительных интервалов прогнозов организуем в виде таблицы

t yt
  169,2 168,9266 0,2734 0,07475
  168,1 168,6837 -0,5837 0,34071
  168,6 168,4408 0,1592 0,02534
  168,4 168,1979 0,2021 0,04084
  167,9 167,9550 -0,055 0,00303
  167,6 167,7121 -0,1121 0,01257
  167,8 167,4692 0,3308 0,10943
  166,9 167,2263 -0,3263 0,10647
  167,1 166,9834 0,1166 0,01360
0,72674

.

.

Дальнейшие вычисления проводим отдельно для t =10 (2002 г.) и t =11 (2003 г.)

Для t = 10

.

,

166,74-0,94< <166,74+0,94.

Итак, с вероятностью γ = 0,95, удельный расход условного топлива в 2002 г. будет принадлежать интервалу (кг/Гкал)

165,8 < < 167,68.

Аналогично для 2003 г. t = 11, получим

. , ,

166,498-0,995< <166,498+0,995. 165,50< <167,49, γ=0,95.

 


 

Приложение 1

Таблица значений функции Лапласа

 

0,00 0,0000 0,32 0,1255 0,64 0,2389 0,96 0,3315
0,01 0,0040 0,33 0,1293 0,65 0,2422 0,97 0,3340
0,02 0,0080 0,34 0,1331 0,66 0,2454 0,98 0,3365
0,03 0,0120 0,35 0,1368 0,67 0,2486 0,99 0,3389
0,04 0,0160 0,36 0,1406 0,68 0,2517 1,00 0,3413
0,05 0,0199 0,37 0,1443 0,69 0,2549 1,01 0,3438
0,06 0,0239 0,38 0,1480 0,70 0,2580 1,02 0,3461
0,07 0,0279 0,39 0,1517 0,71 0,2611 1,03 0,3485
0,08 0,0319 0,40 0,1554 0,72 0,2642 1,04 0,3508
0,09 0,0359 0,41 0,1591 0,73 0,2673 1,05 0,3531
0,10 0,0398 0,42 0,1628 0,74 0,2703 1,06 0,3554
0,11 0,0438 0,43 0,1664 0,75 0,2734 1,07 0,3577
0,12 0,0478 0,44 0,1700 0,76 0,2764 1,08 0,3599
0,13 0,0517 0,45 0,1736 0,77 0,2794 1,09 0,3621
0,14 0,0557 0,46 0,1772 0,78 0,2823 1,10 0,3643
0,15 0,0596 0,47 0,1808 0,79 0,2852 1,11 0,3665
0,16 0,0636 0,48 0,1844 0,80 0,2881 1,12 0,3686
0,17 0,0675 0,49 0,1879 0,81 0,2910 1,13 0,3708
0,18 0,0714 0,50 0,1915 0,82 0,2939 1,14 0,3729
0,19 0,0753 0,51 0,1950 0,83 0,2967 1,15 0,3749
0,20 0,0793 0,52 0,1985 0,84 0,2995 1,16 0,3770
0,21 0,0832 0,53 0,2019 0,85 0,3023 1,17 0,3790
0,22 0,0871 0,54 0,2054 0,86 0,3051 1,18 0,3810
0,23 0,0910 0,55 0,2088 0,87 0,3078 1,19 0,3830
0,24 0,0948 0,56 0,2123 0,88 0,3106 1,20 0,3849
0,25 0,0987 0,57 0,2157 0,89 0,3133 1,21 0,3869
0,26 0,1026 0,58 0,2190 0,90 0,3159 1,22 0,3883
0,27 0,1064 0,59 0,2224 0,91 0,3186 1,23 0,3907
0,28 0,1103 0,60 0,2257 0,92 0,3212 1,24 0,3925
0,29 0,1141 0,61 0,2291 0,93 0,3238 1,25 0,3944
0,30 0,1179 0,62 0,2324 0,94 0,3264    
0,31 0,1217 0,63 0,2357 0,95 0,3289    

 

 

Продолжение приложения 1

 

1,26 0,3962 1,59 0,4441 1,92 0,4726 2,50 0,4938
1,27 0,3980 1,60 0,4452 1,93 0,4732 2,52 0,4941
1,28 0,3997 1,61 0,4463 1,94 0,4738 2,54 0,4945
1,29 0,4015 1,62 0,4474 1,95 0,4744 2,56 0,4948
1,30 0,4032 1,63 0,4484 1,96 0,4750 2,58 0,4951
1,31 0,4049 1,64 0,4495 1,97 0,4756 2,60 0,4953
1,32 0,4066 1,65 0,4505 1,98 0,4761 2,62 0,4956
1,33 0,4082 1,66 0,4515 1,99 0,4767 2,64 0,4959
1,34 0,4099 1,67 0,4525 2,00 0,4772 2,66 0,4961
1,35 0,4115 1,68 0,4535 2,02 0,4783 2,68 0,4963
1,36 0,4131 1,69 0,4545 2,04 0,4793 2,70 0,4965
1,37 0,4147 1,70 0,4554 2,06 0,4803 2,72 0,4967
1,38 0,4162 1,71 0,4564 2,08 0,4812 2,74 0,4969
1,39 0,4177 1,72 0,4573 2,10 0,4821 2,76 0,4971
1,40 0,4192 1,73 0,4582 2,12 0,4830 2,78 0,4973
1,41 0,4207 1,74 0,4591 2,14 0,4838 2,80 0,4974
1,42 0,4222 1,75 0,4599 2,16 0,4846 2,82 0,4976
1,43 0,4236 1,76 0,4608 2,18 0,4854 2,84 0,4977
1,44 0,4251 1,77 0,4616 2,20 0,4861 2,86 0,4979
1,45 0,4265 1,78 0,4625 2,22 0,4868 2,88 0,4980
1,46 0,4279 1,79 0,4633 2,24 0,4875 2,90 0,4981
1,47 0,4292 1,80 0,4641 2,26 0,4881 2,92 0,4982
1,48 0,4306 1,81 0,4649 2,28 0,4887 2,94 0,4984
1,49 0,4319 1,82 0,4656 2,30 0,4893 2,96 0,4985
1,50 0,4332 1,83 0,4664 2,32 0,4898 2,98 0,4986
1,51 0,4345 1,84 0,4671 2,34 0,4904 3,00 0,49865
1,52 0,4357 1,85 0,4678 2,36 0,4909 3,20 0,49931
1,53 0,4370 1,86 0,4686 2,38 0,4913 3,40 0,49966
1,54 0,4382 1,87 0,4693 2,40 0,4918 3,60 0,49841
1,55 0,4394 1,88 0,4699 2,42 0,4922 3,80 0,499928
1,56 0,4406 1,89 0,4706 2,44 0,4927 4,00 0,499968
1,57 0,4418 1,90 0,4713 2,46 0,4931 4,50 0,499997
1,58 0,4429 1,91 0,4719 2,48 0,4934 5,00 0,499997

 

 


Приложение 2

Таблица значений функции

                     
0,0 0,399                  
0,1                    
0,2                    
0,3                    
0,4                    
0,5                    
0,6                    
0,7                    
0,8                    
0,9                    
1,0 0,242                  
1,1                    
1,2                    
1,3                    
1,4                    
1,5                    
1,6                    
1,7                    
1,8                    
1,9                    
2,0 0,054                  
2,1                    
2,2                    
2,3                    
2,4                    
2,5                    
2,6                    
2,7                    
2,8                    
2,9                    
3,0 0,004                  
3,1                    
3,2                    
3,3                    
3,4                    
3,5                    
3,6                    
3,7                    
3,8                    
3,9                    

Приложение 3

 

Критические точки распределения

 

Число степеней свободы Уровень значимости
0,01 0,025 0,05 0,95 0,975 0,99
  6,6 5,0 3,8 0,0039 0,00098 0,00016
  9,2 7,4 6,0 0,103 0,051 0,020
  11,3 9,4 7,8 0,352 0,216 0,115
  13,3 11,1 9,5 0,711 0,484 0,297
  15,1 12,8 11,1 1,15 0,831 0,554
  16,8 14,4 12,6 1,64 1,24 0,872
  18,5 16,0 14,1 2,17 1,69 1,24
  20,1 17,5 15,5 2,73 2,18 1,65
  21,7 19,0 16,9 3,33 2,70 2,09
  23,2 20,5 18,3 3,94 3,25 2,56
  24,7 21,9 19,7 4,57 3,82 3,05
  26,2 23,3 21,0 5,23 4,40 3,57
  27,7 24,7 22,4 5,89 5,01 4,11
  29,1 26,1 23,7 6,57 5,63 4,66
  30,6 27,5 25,0 7,26 6,26 5,23
  32,0 28,8 26,3 7,96 6,91 5,81
  33,4 30,2 27,6 8,67 7,56 6,41
  34,8 31,5 28,9 9,39 8,23 7,01
  36,2 32,9 30,1 10,1 8,91 7,63
  37,6 34,2 31,4 10,9 9,59 8,26
  38,9 35,5 32,7 11,6 10,3 8,90
  40,3 36,8 33,9 12,3 11,0 9,54
  41,6 38,1 35,2 13,1 11,7 10,2
  43,0 39,4 36,4 13,8 12,4 10,9
  44,3 40,6 37,7 14,6 13,1 11,5
  45,6 41,9 38,9 15,4 13,8 12,2
  47,0 43,2 40,1 16,2 14,6 12,9
  48,3 44,5 41,3 16,9 15,3 13,6
  49,6 45,7 42,6 17,7 16,0 14,3
  50,9 47,0 43,8 18,5 16,8 15,0

 




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 311; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.