Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Зависимость давления насыщенного пара от температуры




Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 12. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (IV, 5), а вдали от критической температуры уравнением (IV, 8).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (IV, 8)

(IV, 9)

Представив уравнение (IV, 9) в виде неопределенного интеграла, получим:

(IV, 10),

где С — константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах (в этом случае тангенс наклона прямой равен ). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.13 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Рис. 13. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

Однако уравнение (IV, 10) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур — от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом, т.к. при этом существенно возрастает его давление. Поэтому уравнение, охватывающее зависимость P = f(T) в широком интервале температур, неизбежно становится эмпирическим.

Сверхкритическое состояние – четвертая форма агрегатного состояния вещества, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO2, легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа, мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid, то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Ткр .) и давлением (Ркр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

 

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С и –147° С), поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: tкр = 374,2° С и Ркр = 21,4 МПа.

Критическая точка признается как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl2, KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО2, который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (tкр – 31° С, Ркр – 73,8 атм.), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО2 можно считать экологически абсолютно чистым растворителем.

Сейчас сложились и продуктивно сосуществуют два самостоятельных направления использования сверхкритических флюидов. Эти два направления различаются конечными целями того, что достигается с помощью этих сверхкритических сред. В первом случае СКФ используются для экстракции необходимых веществ из различных материалов, продуктов или отходов производства. И в этом есть огромная экономическая заинтересованность. Во втором случае СКФ используют непосредственно для осуществления ценных, часто новых химических превращений. Надо подчеркнуть, что достоинства СКФ в качестве экстрагентов обусловлены прежде всего тем, что они оказались способными исключительно эффективно растворять неполярные соединения, в том числе и твердые вещества. Это основное достоинство резко усиливается уже упоминавшейся нами высокой диффузионной способностью СКФ и их исключительно низкой вязкостью. Обе последние особенности приводят к тому, что скорость экстракции становится чрезвычайно высокой. Приведём только некоторые примеры.

Так, деасфальтизация смазочных масел осуществляется с использованием сверхкритического пропана. Сырое масло растворяется в сверхкритическом пропане при давлении, заметно более высоком, чем Ркр. При этом в раствор переходит всё, кроме тяжелых асфальтовых фракций. Из-за огромной разницы в вязкостях сверхкритического раствора и асфальтовой фракции механическое разделение осуществляется очень легко. Затем сверхкритический раствор поступает в расширительные емкости, в которых давление постепенно снижается, оставаясь, однако, выше Ркр вплоть до последней ёмкости. В этих ёмкостях последовательно выделяются из раствора всё более легкие примесные фракции нефтей из-за снижения их растворимости с падением давления. Разделение фаз в каждой из этих ёмкостей опять осуществляется очень легко вследствие резкого различия их вязкостей. В последней ёмкости давление ниже Ркр, пропан при этом испаряется, в результате выделяется очищенное от нежелательных примесей масло.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счёт высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО2, далее создают необходимое давление (>73 атм.), в результате СО2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

В настоящее время большое практическое значение имеет высокая растворимость H2 в сверхкритических средах, поскольку полезные процессы гидрирования очень распространены. Так, например, разработан эффективный процесс каталитического гидрирования CO2 в сверхкритическом состоянии, приводящий к образованию муравьиной кислоты. Процесс протекает очень быстро и чисто.


 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1975; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.177 сек.