Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод сумм для вычисления выборочной средней и дисперсии




Неравноотстоящие варианты

.

Равноотстоящие варианты

Метод произведений вычисления выборочной средней и дисперсии

Пусть выборка задана в виде распределения равноотстоящих вариант и соответствующих им частот. В этом случае удобно находить выборочную среднюю и дисперсию методом произведений по формулам

, ,

где – шаг (разность между двумя соседними вариантами); – ложный нуль (варианта, которая расположена примерно в середине вариационного ряда); – условная варианта; – условный момент первого порядка; – условный момент второго порядка.

Пример. Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема :

.

Решение. Составим расчетную табл. 8.1; для этого:

1) запишем варианты в первый столбец;

2) запишем частоты во второй столбец; сумму частот (100) поместим в нижнюю клетку столбца;

3) в качестве ложного нуля выберем варианту (17), которая имеет наибольшую частоту (в качестве можно взять любую варианту, расположенную примерно в середине столбца); в клетке третьего столбца, которая принадлежит строке, содержащей ложный нуль, пишем 0; над нулем последовательно записываем -1, -2, -3 а под нулем 1, 2;

4) произведения частот на условные варианты запишем в четвертый столбец; отдельно находим сумму (А1=--74) отрицательных чисел и отдельно сумму (А2=14) положительных чисел; сложив эти числа, их сумму (-60) помещаем в нижнюю клетку четвертого столбца;

5) произведения частот на квадраты условных вариант, то есть , запишем в пятый столбец (удобнее перемножить числа каждой строки третьего и четвертого столбцов; ); сумму чисел столбца (152) помещаем в нижнюю клетку пятого столбца;

6) произведения частот на квадраты условных вариант, увеличенных на единицу, то есть , запишем в шестой контрольный столбец; сумму чисел столбца (132) помещаем в нижнюю клетку шестого столбца.

В итоге получим расчетную табл. 8.1.

Для контроля вычислений пользуются тождеством

.

Контроль:

, .

Совпадение контрольных сумм свидетельствует о правильности вычислений.

Вычислим условные моменты первого и второго порядков:

; .

Найдем шаг (разность между любыми двумя соседними вариантами): .

Вычислим искомые выборочные среднюю и дисперсию, учитывая, что ложный нуль (варианта, которая имеет наибольшую частоту) :

;


Таблица 1

           
    -3 -12    
    -2 -32    
    -1 -30    
      А1=-74    
           
           
      А2=14    
   

Если первоначальные варианты не являются равноотстоящими, то интервал, в котором заключены все варианты выборки, делят на несколько равных, длины , частичных интервалов (каждый частичный интервал должен содержать не менее 8-10 вариант). Затем находят середины частичных интервалов, которые и образуют последовательность равноотстоящих вариант. В качестве частоты каждой середины интервала принимают сумму частот вариант, которые попали в соответствующий частичный интервал.

При вычислении выборочной дисперсии для уменьшения ошибки, вызванной группировкой (особенно при малом числе интервалов), делают поправку Шеппарда, а именно вычитают из вычисленной дисперсии квадрата длины частичного интервала.

Таким образом, с учетом поправки Шеппарда дисперсию вычисляют по формуле .

Пример. Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема :

.

Решение. Разобьем интервал 2-26 на следующие четыре частичных интервала длины .приняв середины частичных интервалов в качестве новых вариант , получим равноотстоящие варианты: , , , .

В качестве частоты варианты примем сумму частот вариант, попавших в первый интервал: .

Вычислим аналогично частоты остальных вариант, получим распределение равноотстоящих вариант:

Пользуясь методом произведений, найдем , .

Принимая во внимание, что число частичных интервалов (4) мало, учтем поправку Шеппарда: .

 

Пусть выборка задана в виде распределения равноотстоящих вариант и соответствующих им частот. В этом случае выборочные среднюю и дисперсию можно вычислить по формулам:

, . (26)

При использовании метода сумм условные моменты первого и второго порядков находят по формулам: , , (27)

где , , .

Таким образом, в конечном счете, надо вычислить числа , , , .

Пример. Найти методом сумм выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема :

.

Решение. Составим расчетную табл. 9.1, для этого:

1) запишем варианты в первый столбец;

2) запишем частоты во второй столбец; сумму частот (100) поместим в нижнюю клетку столбца;

3) в качестве ложного нуля выберем варианту (65), которая имеет наибольшую частоту (в качестве можно взять любую варианту, расположенную примерно в середине столбца); в клетках строки, содержащей ложный нуль, запишем нули; в четвертом столбце над и под уже помещенным нулем запишем еще по одному нулю;

4) в оставшихся незаполненными над нулем клетках третьего столбца (исключая самую верхнюю) запишем последовательно накопленные частоты: 3; 3+4=7; 7+8=15; 15+14=29; 29+20=49; сложив все накопленные частоты, получим число , которое поместим в верхнюю клетку третьего столбца. В оставшихся незаполненными под нулем клетках третьего столбца (исключая самую нижнюю) запишем последовательно накопленные частоты: 2; 2+3=5; 5+6=11; 11+5=16; сложив все накопленные частоты, получим число , которое поместим в нижнюю клетку третьего столбца;

5) аналогично заполняется четвертый столбец, причем суммируют частоты третьего столбца; сложив все накопленные частоты, расположенные над нулем, получим число , которое поместим в верхнюю клетку четвертого столбца; сумма накопленных частот, расположенных под нулем, равна числу , которое поместим в нижнюю клетку четвертого столбца. В итоге получим расчетную табл. 2.

Таблица 2

       
       
       
       
       
       
       
       
       
       
       
 

 

Найдем , , :

; ;

.

Найдем условные моменты первого и второго порядков:

,

.

Вычислим искомые выборочную среднюю и выборочную дисперсию, учитывая, что шаг (разность между двумя соседними вариантами) и ложный нуль : ;

.




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 6467; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.