Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрическое решение игры




 

Пусть игра 2 х 2 имеет платежную матрицу (7.8). Изобразим на оси абсцисс отрезок горизонтальной линии единичной длины и обозначим концы отрезка через нуль и единицу. Из точек 0 и 1 по осям ординат восстановим перпендикулярные линии и изобразим на них выигрыши игрока А при использовании им соответственно чистых стратегий А1 и А2. Все промежуточные точки отрезка () будут изображать смешанные стратегии:

 

 

При оптимальной смешанной стратегии выигрыш игрока А будет составлять величину u и отмечен точкой М.

 

Произведем аналогичные построения для игрока В:

 

 

 

При графическом решении игр возможны и другие ситуации:

 

 

 
 

 

 

Пример. Найдем графическое и аналитическое решение игры:

 

  В1 В2 a = 4, b = 5, a ¹ b - следовательно, седловой точки нет.
А1    
А2    

 
 

Найдем оптимальную смешанную стратегию игрока А

 

Найдем оптимальную смешанную стратегию игрока В:

 

 

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 606; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.