Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм розрахунку




Суть алгоритму.

З першого рівняння відома залежність від , згідно другого залежить від і , тобто враховуючи перше рівняння може бути виражене лише через . Виражаючи послідовно через дійдемо до необхідності виразити з останнього рівняння через . Проте так як в останньому рівнянні не існує, ми зразу отримаємо чисельне значення . Після знаходження зворотною підстановкою знаходять всі через .

Докладніше:

З першого рівняння

, де (5)

Підставимо в друге рівняння

,

де .

Аналогічно, підставивши в третє рівняння отримаємо залежність для і так далі до . У загальному вигляді

(6)

де (7)

Для останнього рівняння, маючи з передостаннього отримаємо

чи

(8)

Оскільки знайдений, то зворотною підстановкою за формулою (6) можна знайти

1) обчислюємо по (5)

2) знаходимо по (7)

3) знаходимо і вважаємо по (8)

4) визначаємо для по (6).


6. ІТЕРАЦІЙНІ МЕТОДИ РІШЕННЯ СИСТЕМ РІВНЯНЬ

 

Метод простої ітерації.

Для системи рівнянь

чи у векторному вигляді (1)

Нехай діагональні коефіцієнти .

Вирішимо перше рівняння відносно , друге – , і так далі. Отримаємо еквівалентну систему.

(2)

де при і при (3)

Оберемо довільно початкове наближення коренів

(4)

намагаючись, звісно, щоб вони певною мірою відповідали шуканим невідомим .

У якості початкового наближення можна взяти, наприклад, стовпчик відповідних членів

(4').

Знайдемо перше наближення системи за формулами (2)

чи

,

Друге наближення знаходять аналогічно:

,

Якщо відомо k-е наближення коренів, то (k + 1)-е знаходиться аналогічно

, .

Якщо послідовність наближень має границю

то ця границя є рішенням системи (2).

На практиці розрахунок наближень виконується до тих пір, поки буде виконуватись умова

ε – попередньо завдане мале число.





Дата добавления: 2014-12-23; Просмотров: 409; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.014 сек.