Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гироскоп




Гироскопом называется быстро вращающееся симметричное тело, ось вращения которого может изменять свое направление в пространстве. Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп помещают в так называемом кардановом подвесе (рис.5.13). Маховик гироскопа вращается во внутренней кольцевой обойме вокруг оси С1С2, проходящей через его центр тяжести. Внутренняя обойма в свою очередь может вращаться во внешней обойме вокруг оси В1В2, перпендикулярной к С1С2. Наконец, наружная обойма может свободно вращаться в подшипниках стойки вокруг оси А1А2, перпендикулярной к осям С1С2 и В1В2. Все три оси пересекаются в некоторой неподвижной точке О, называемой центром подвеса или точкой опоры гироскопа. Гироскоп в кардановом подвесе имеет три степени свободы и, следовательно, может совершать любые повороты вокруг центра подвеса. Если центр подвеса гироскопа совпадает с его центром тяжести, то результирующий момент сил тяжести всех частей гироскопа относительно центра подвеса равен нулю. Такой гироскоп называют уравновешенным.

Рассмотрим теперь наиболее важные свойства гироскопа, которые и нашли ему широкое применение в различных областях.

 

 

1) Устойчивость.

При любых поворотах стойки уравновешенного гироскопа его ось вращения сохраняет неизменное направление по отношению к лабораторной системе отсчета. Это связано с тем, что момент всех внешних сил, равный моменту сил трения, очень мал и практически не вызывает изменения момента импульса гироскопа, т.е.

и

Поскольку момент импульса направлен вдоль оси вращения гироскопа, то ее ориентация должна сохраняться неизменной.

Если внешняя сила действует в течение короткого времени, то интеграл, определяющий приращение момента импульса, будет мал

. (5.34)

Значит, при кратковременных воздействиях даже больших сил движение уравновешенного гироскопа изменяется мало. Гироскоп как бы сопротивляется всяким попыткам изменить величину и направление его момента импульса. С этим и связана замечательная устойчивость, которую приобретает движение гироскопа после приведения его в быстрое вращение. Это свойство гироскопа широко используется для автоматического управления движением самолетов, судов, ракет и прочих аппаратов.

Если же действовать на гироскоп длительное время постоянным по направлению моментом внешних сил, то ось гироскопа устанавливается, в конце концов, по направлению момента внешних сил. Данное явление используется в гирокомпасе. Этот прибор представляет собой гироскоп, ось которого может свободно поворачиваться в горизонтальной плоскости. Вследствие суточного вращения Земли и действия момента центробежных сил ось гироскопа поворачивается так, чтобы угол между и стал минимальным (рис.5.14). Это соответствует положению оси гироскопа в плоскости меридиана.

2). Гироскопический эффект.

Если к вращающемуся гироскопу приложить пару сил и , стремящуюся повернуть его около оси, перпендикулярной оси вращения, то он станет поворачиваться вокруг третьей оси, перпендикулярной к первым двум (рис.5.15). Такое необычное поведение гироскопа получило название гироскопического эффекта. Оно объясняется тем, что момент пары сил направлен вдоль оси О1О1 и изменение за время вектора на величину будет иметь тоже направление. В результате новый вектор повернется относительно оси О2О2. Таким образом, противоестественное на первый взгляд поведение гироскопа полностью соответствует законам динамики вращательного движения

3). Прецессия гироскопа.

Прецессией гироскопа называется конусообразное движение его оси. Оно происходит в том случае, когда момент внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Для демонстрации прецессии может служить велосипедное колесо с наращенной осью, приведенное в быстрое вращение (рис.5.16).

Если колесо подвесить за наращенный конец оси, то его ось начнет прецессировать вокруг вертикальной оси под действием собственного веса. Демонстрацией прецессии может служить и быстро вращающийся волчок.

Выясним причины прецессии гироскопа. Рассмотрим неуравновешенный гироскоп, ось которого может свободно поворачиваться вокруг некоторой точки О (рис.5.16). Момент сил тяжести, приложенный к гироскопу, равен по величине

,

где - масса гироскопа, - расстояние от точки О до цента масс гироскопа, - угол, образованный осью гироскопа с вертикалью. Вектор направлен перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа.

Под действием этого момента момент импульса гироскопа (его начало помещено в точку О) получит за время приращение , а вертикальная плоскость, проходящая через ось гироскопа, повернется на угол . Вектор все время перпендикулярен к , следовательно, не изменяясь по величине, вектор изменяется только по направлению. При этом спустя время взаимное расположение векторов и будет таким же, как и в начальный момент. В итоге ось гироскопа будет непрерывно поворачиваться вокруг вертикали, описывая конус. Такое движение называется прецессией.

Определим угловую скорость прецессии. Согласно рис.5.16 угол поворота плоскости, проходящей через ось конуса и ось гироскопа, равен

,

где - момент импульса гироскопа, а - его приращение за время .

Разделив на , с учетом отмеченных соотношений и преобразований, получим угловую скорость прецессии

. (5.35)

Для гироскопов, применяющихся в технике, угловая скорость прецессии бывает в миллионы раз меньше скорости вращения гироскопа .

В заключении отметим, что явление прецессии наблюдается и у атомов вследствие орбитального движения электронов.

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 691; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.