КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Момент импульса материальной точки относительно точки O определяется векторным произведением
Момент импульса материальной точки и тела. Момент силы. Второй закон Ньютона для вращательного движения материальной точки и тела. Условия равновесия абсолютно твердого тела. Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Чтобы рассчитать момент импульса тела, его надо разбить на бесконечно малые кусочки и векторно просуммировать их моменты как моменты импульса материальных точек, то есть взять интеграл: где × ‒ знак векторного произведения , где — радиус-вектор, проведенный из точки O, — импульс материальной точки. Момент импульса материальной точки относительно неподвижной оси Lz равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса Lx не зависит от положения точки O на оси z. М = Fd — момент силы равен произведению величины силы на ее плечо. Элементарная работа по повороту тела равна произведению момента силы на угол поворота. Итак, необходимые условия равновесия абсолютно твердого тела, имеющего неподвижную ось вращения: одновременное равенство нулю суммы сил и суммы моментов сил, действующих на тело. Второй закон Ньютона для тела: угловое ускорение ε твердого тела при вращении вокруг неподвижной оси прямо пропорционально вращающему моменту и обратно пропорционально моменту инерции относительно этой оси. Из этого выражения следует, что момент инерции U является мерой его инертности во вращательном движении вокруг неподвижной оси. В случае поступательного движения мерой инертности, как известно, является масса тела. (Эпселон и момент- векторные) Второй закон Ньютона для материальной точки: материальная точка может двигаться вокруг оси, оставаясь от нее на постоянном расстоянии, следовательно, ее траектория будет являться окружностью с центром на оси вращения. Это уравнение называется основным уравнением динамики вращательного движения. Итак, момент силы во вращательном движении играет такую же роль, как и сила в п
Вращательное движение. Момент инерции тела относительно оси. Теорема Штейнера. Момент силы относительно оси. Равноускоренное вращение. Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: где: mi — масса i -й точки, ri — расстояние от i -й точки до оси. Теорема Штейнера: момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями: где: JC — известный момент инерции относительно оси, проходящей через центр масс тела; J — искомый момент инерции относительно параллельной оси; m — масса тела; d — расстояние между указанными осями.
Дата добавления: 2014-12-25; Просмотров: 863; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |