Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Коэффициент взаимной сопряженности Пирсона




Коэффициент взаимной сопряженности Пирсона С также является мерой связи двух признаков, если один из них измерен по шкале наименований и может иметь несколько значений (больше двух), а второй признак измерен по такой же шкале или по шкале порядка, или по шкале интервальной, или по шкале пропорциональной.

Этот коэффициент также рассчитывается с помощью критерия хи-квадрат Пирсона, расчетное значение которого подставляется в формулу:

, где N — общий объем выборки.

 

Таблиц с критическими значениями для коэффициента взаимной сопряженности Пирсона не существует. Поэтому поступают следующим образом:

1. Вычисляют расчетное значение критерия хи-квадрат Пирсона.

2. Сравнивают его с критическим значением критерия хи-квадрат Пирсона для соответствующего числа степеней свободы (см. приложение 1.6).

3. Если χ2расч < χ2табл, то расхождения между рас­пределениями статистически недостоверны, или признаки изменяются несогласованно, или связи между признаками нет. Делается вывод об отсутствии взаимосвязи. Величину коэффициента С можно в этом случае не вычислять.

4. Если χ2расч ≥ χ2табл, то рас­хождения между распределениями статистически достоверны, или признаки изменяются согласованно, или связь между признаками статистически значима.

5. Далее вычисляется значение коэффициента взаимной сопряженности Пирсона, которое и является мерой связи. Чем больше это значение (величина этого коэффициента может быть только положительной и изменяется от 0,00 до +1,00), тем сильнее взаимосвязь.

Обратите внимание на то, что ограничения в использовании этого коэффициента соответствуют ограничениям критерия хи-квадрат Пирсона, а именно: объем выборки должен быть N≥30 и теоретическая частота в ячейках должна быть f≥ 5.

 

Сравнение двух последних коэффициентов показало, что в одних и тех же случаях коэффициент взаимной сопряженности Пирсона дает несколько бóльшие значения меры связи.

Следует учитывать при выборе меры связи и то, что коэффициент взаимной сопряженности Чупрова рекомендуется использовать в тех случаях, когда число градаций значений признаков невелико, так как этот коэффициент менее чевствителен к количеству событий.




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 1515; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.