Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ограничения критерия. Критерий «хи-квадрат» Пирсона




Описание критерия

Назначения критерия

Критерий «хи-квадрат» Пирсона

Критерий хи-квадрат Пирсона был рассмотрен в теме № 6. Напомним его назначение, сущность и ограничения в применении.

Критерий χ2 применяется в двух целях;

1) для сопоставления эмпирического распределения признака с теоре­тическим (равномерным, нормальным или каким-то иным);

2) для сопоставления двух, трех или более эмпирических распределе­ний одного и того же признака, то есть для проверки их однородности;

3) для оценки стохастической (вероятностной) независимости в системе случайных событий;

и т.д.

Критерий χ2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.

Преимущество метода состоит в том, что он позволяет сопостав­лять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтерна­тивного распределения ("да - нет", "допустил брак - не допустил бра­ка", "решил задачу - не решил задачу" и т. п.) мы уже можем приме­нить критерий χ2.

1. Объем выборки должен быть достаточно большим: N>30. При N<30 критерий χ2 дает весьма приближенные значения. Точность крите­рия повышается при больших N.

2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f ≥ 5. Это означает, что если число разрядов задано зара­нее и не может быть изменено, то мы не можем применять метод χ2, не накопив определенного минимального числа наблюдений. Ес­ли, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5-7=35 обра­щений. Таким образом, если количество разрядов (k) задано зара­нее, как в данном случае, минимальное число наблюдений (Nmin) оп­ределяется по формуле: .

3. Выбранные разряды должны "вычерпывать" все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопостав­ляемых распределениях.

4. Необходимо вносить "поправку на непрерывность" при сопоставле­нии распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ2, уменьшается (см. пример с по­правкой на непрерывность).

5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду. Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.

 

Алгоритм расчета критерия и правило вывода не изменяются. Поэтому подробно на этом критерии в данной теме мы останавливаться не будем.

 




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 727; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.