КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общая формула Симпсона и ее остаточный член
Пусть n=2m есть четное число и - значения функции для равноотстоящих точек с шагом . Применяя формулу Симпсона к каждому удвоенному промежутку длины 2h, будем иметь . Следовательно, . Отсюда получаем общую формулу Симпсона: . Введя обозначения , формулу можно записать в более простом виде:
.
Если функция непрерывно дифференцируема до четвертого порядка, то ошибка формулы Симпсона на каждом удвоенном промежутке дается формулой: , где . Суммируя все эти ошибки, получим остаточный член общей формулы Симпсона в виде: . непрерывна на отрезке [ a,b ], поэтому найдется точка такая, что . Следовательно , (8.9) где . Если задана предельная допустимая погрешность , то, обозначив , будем иметь для определения шага h неравенство: , отсюда , т.е. h имеет порядок . Говорят, что степень точности метода Симпсона равна четырем Во многих случаях оценка погрешности квадратурной формулы весьма затруднительна. Тогда обычно применяют двойной пересчет с шагами h и 2 h и считают, что совпадающие десятичные знаки принадлежат точному значению интеграла. Предполагая, что на отрезке [ a,b ] производная меняется медленно, в силу формулы (8.9), получаем приближенное выражение для искомой ошибки , где коэффициент M будем считать постоянным на промежутке интегрирования. Пусть и - приближенные значения интеграла , полученные по формуле Симпсона соответственно с шагом h и H=2h. Имеем: и . Отсюда
.
За приближенное значение интеграла целесообразно принять исправленное значение
.
Пример 8.2 Вычислить в Mathcad интеграл методом Симпсона для n=8. Оценить остаточный член.
Вычисляем для формулы Симпсона при n=4
Сделаем двойной пересчет при n=8
В качестве ответа возьмем
Остаточный член приблизительно равен
Это точный результат
Рис. 8.3. Решение примера 8.2 в Mathcad
Дата добавления: 2014-12-26; Просмотров: 732; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |