Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема «Технология компьютерного 2 страница




• движение тела, брошенного под углом к горизонту, с учетом сопротивления среды;

• взлет ракеты (особенность — масса тела меняется в ходе движения);

• различные задачи на прицельную стрельбу при движении «снаряда» в среде (в воздухе, под водой и т.д.).

Многие такие задачи сформулированы в пособии [6].

При моделировании движения тел эффективным методическим приемом является обезразмеривание величин, входящих в математическую модель. Обезразмеривание заключается в том, что вместо абсолютных единиц системы СИ (или какой-либо другой) переходят к относительным единицам, естественным именно для данного движения. При этом существенно их правильно выбрать. Например, при изучении движения тела, брошенного под углом к горизонту, при отсутствии сопротивления среды легко получить выражения для дальности полета по горизонтали L,максимальной высоты полета H, полного времени полета Т(отсылаем к школьным учебникам физики). Введем новые переменные для скорости, перемещения и времени. Будем измерять х- и у -компоненты скорости относительно ее начального значения, перемещение в горизонтальном направлении — относительно L, в вертикальном — относительно H, время — относительно Т. Это означает введение новых переменных, которые обозначим так:

Переходя в дифференциальных уравнениях модели к новым переменным, получаем в них безразмерные комбинации параметров, определяющих закономерности движения.

Смысл этой деятельности заключается в следующем. Во-первых, следует подчеркивать большую естественность в использовании относительных (безразмерных) единиц измерения физических величин, нежели абсолютных. Диапазон значений безразмерных величин неширок, в данной задаче, очевидно, что в любой момент времени в ходе движения тела Vx, Vy, X, Y, t < 1. Это удобно, особенно при решении задач, в которых значения (размерных) переменных изображаются очень малыми или очень большими числами. Получив, например, в какой-то момент значение Х = 0,3, мы понимаем, что это составляет 0,3 от максимального движения по горизонтали в отсутствие трения, т.е. всякий раз чувствуем смысл, чего не скажешь, получив, например, значение х = 26 м/с.

Важнейшая роль обезразмеривания — установление законов подобия. У изучаемого движения есть множество вариантов, определяемых наборами значений параметров, входящих в исходные уравнения или являющихся для них начальными условиями. После обезразмеривания переменных появляются безразмерные комбинации параметров, фактически определяющие характер движения. Если изучаются два разных движения с разными размерными параметрами, но такие, что значения безразмерных параметров одинаковы, то движения будут качественно одинаковы (подобны). Число таких комбинаций обычно меньше числа размерных параметров, что тоже создает удобство при полном численном исследовании всевозможных ситуаций, связанных с этим процессом.

Сделаем оговорку: обезразмеривание — полезный методический прием. Однако если учащиеся испытывают трудности с его пониманием и использованием, настаивать на этом необязательно; те же по существу результаты можно получить и при использовании уравнений в размерных переменных.

Моделирование колебательных движений. В этой и в последующих обсуждаемых моделях практически откажемся от записи формул; математические формулировки можно найти в указанной ниже литературе (например, пособиях [5, 8]).

Колебательные изменения значений величин встречаются в естественных (природных и общественных) и искусственных (технических) системах столь часто, что, несомненно, заслуживают внимания при изучении компьютерного математического моделирования.

По традиции изучение колебательного движения чаще всего начинается с так называемого математического маятника — идеализированной системы, состоящей из тела массы т, прикрепленного к концу жесткого «невесомого» стержня длиной l, верхний конец которого вращается без трения в точке подвеса. Поскольку его движение при малых амплитудах описано в школьных учебниках физики и полностью поддается исследованию аналитически, без привлечения компьютера и численных методов, то методически целесообразно, отметив указанное выше обстоятельство и напомнив учащимся основные результаты, связанные с малыми (гармоническими) колебаниями (для удобства эти формулы приведены ниже), перейти к рассмотрению модели движения математического маятника при произвольном (не малом) начальном угле отклонения.

Процедура вывода уравнения движения маятника описана во многих руководствах. Процесс описывается либо в дифференциальной, либо в конечно-разностной формах. Переменной, относительно которой записаны уравнения, является q — угол отклонения нити от положения равновесия. В случае колебаний с малой амплитудой в одном из уравнений можно приближенно заменить sin(q) наq. Задача о малых колебаниях имеет простое аналитическое решение, приводимое в школьных учебниках физики. Приводим это решение (гармонические колебания) и обсуждаем его свойства.

Далее ставим задачу исследовать процесс колебаний математического маятника с немалой амплитудой. Она может включать ряд частных заданий; первым из них может быть установление зависимости периода колебаний от начальной амплитуды и его отклонение от периода малых колебаний.

Весьма интересным и полезным, с точки зрения развития учащихся и получения дополнительных знаний, может стать введение представлений о гармоническом анализе. Поскольку никакое регулярное введение в теорию рядов Фурье на этом этапе обучения не нужно и невозможно, то достаточно ограничиться примерно следующим подходом. Уточним еще раз, что такое периодическая функция, и развеем часто существующее заблуждение, что периодическая и гармоническая суть одно и то же. Приводим примеры периодических, но не гармонических зависимостей. Для того чтобы продемонстрировать учащимся, что такого рода зависимости могут быть аппроксимированы суммой простых тригонометрических функций, можно привести (без доказательства) соответствующие ряды и предложить просуммировать (с помощью ЭВМ) возрастающее число гармоник, наблюдая на экране, как сумма становится все ближе к исходной зависимости.

При немалых колебаниях движение маятника не является гармоническим, хотя и остается периодическим. Изучаемое периодическое движение при условии, что в начальный момент маятник имеет максимальное отклонение и нулевую скорость, можно представить суммой гармонических, что позволяет увидеть различия между малыми и произвольными колебаниями маятника, понять методику исследования колебательных движений.

Одним из первых заданий на пути такого исследования может быть следующее: ограничиваясь немногими членами ряда, исследовать зависимость амплитуд нескольких первых гармоник от начальной амплитуды колебаний. Поскольку формулы для коэффициентов Фурье учащимся незнакомы, то есть два пути: либо, при достаточно глубокой математической подготовке, «вывести» эти формулы (что представляется исключительным случаем), либо просто взять на кривой q(t) несколько произвольных (примерно равноотстоящих) точек и привязать в них наблюдаемую зависимость, т.е., по существу, воспользоваться интерполяцией. Этот прием, не будучи строгим, тем не менее позволяет найти с достаточной для наших целей точностью амплитуды нескольких гармоник.

Дальнейшее моделирование колебаний математического маятника может включать в себя:

• колебания маятника при наличии трения;

• вынужденные колебания под действием периодической силы, изучение явлений биений и резонанса при приближении частоты вынуждающей силы к собственной частоте колебаний маятника;

• колебания маятника с периодически меняющейся длиной нити подвеса и параметрический резонанс.

Моделирование движения небесных тел. Указанное моделирование опирается на знания учащихся, почерпнутые при изучении закона всемирного тяготения. Оно позволяет углубить знания, связанные с движением тел Солнечной системы, элементами астрономии.

Тема начинается с рассмотрения модели движения космического тела (планеты, кометы, спутника) в гравитационном поле, создаваемом телом с многократно большей массой. Напомните учащимся физический закон, регулирующий данное движение, — закон всемирного тяготения; для моделирования существенна запись этого закона в векторной форме.

Важный методический (и содержательный) момент — выбор системы координат, в которой рассматривается движение. Если ее центр расположить произвольно, то возникает задача о движении двух взаимно тяготеющих тел с весьма сложными траекториями. Напомните учащимся, что исторически астрономы, начиная с Птолемея и включая Коперника, рассматривали движение относительно одного из тел (т.е., говоря более формально, в системе координат, связанной с этим телом). В системе Коперника такой системой координат при изучении Солнечной системы стало Солнце. Это резко упрощает задачу, позволяет заниматься изучением движения лишь одного из тел.

Процедура получения системы дифференциальных уравнений движения в указанной системе координат описана в ряде пособий (см., например, [5, 9]).

Следует обратить внимание учащихся на то, что в этой задаче особенно неудобно работать с размерными величинами, измеряемыми миллиардами метров, секунд и т.д. Для выбора типичных величин, с помощью которых естественно произвести обезразме-ривание, можно рассуждать так. При некоторых условиях, как известно, орбита движения «малого» небесного тела может быть круговой. Соотношения параметров, характеризующих эту круговую орбиту, нетрудно установить, так как при круговом движении сила тяготения играет роль центростремительной силы. Таким образом, достаточно произвольно выбрать один параметр — типичное расстояние, а для скорости и времени параметры для обезразмеривания тем самым найдены.

В качестве первой содержательной задачи можно рассмотреть движение небесных тел вокруг Солнца. Тогда в качестве типичного расстояния естественно принять характерное расстояние от Земли до Солнца (так называемая астрономическая единица). После обезразмеривания оказывается, что уравнения в безразмерных переменных вообще не содержат параметров! Единственное, что отличает режимы движения друг от друга — это начальные условия.

Вернемся к исследованию движения небесных тел в Солнечной системе. Учащиеся задают некоторые (возможно, произвольные) начальные условия и интегрируют уравнения. Первая цель — построить траекторию движения и поэкспериментировать, как она будет меняться при изменении начальных условий (например, скорости).

Далее исследование можно усложнить. Так, при движении по замкнутым орбитам можно поставить задание: проверить справедливость законов Кеплера о соотношении параметров орбиты; при движении по незамкнутым орбитам — доказать, что ее формой будет гипербола, и т.д. Многие задания для самостоятельной работы можно найти в задачнике [5].

Если придерживаться методики, избегающей упоминания о дифференциальных уравнениях вообще, то уравнения модели можно сразу записать в конечно-разностной форме. Они получаются из второго закона Ньютона, представленного в конечно-разностной форме, и закона всемирного тяготения. Разумеется, с точки зрения дифференциального подхода, это есть применение

метода Эйлера к дифференциальным уравнениям модели уравнениям.

Моделирование движения заряженных частиц. Из курса физики учащимся знаком закон Кулона, описывающий взаимодействие точечных зарядов. Он похож на закон всемирного тяготения, но роль масс играют заряды.

Наиболее простые модели в данном разделе получаются при моделировании движения одного заряженного тела в поле, создаваемом другим заряженным телом («неподвижным», находящемся в начале выбранной системы координат). В этой ситуации уравнения модели практически совпадают с уравнениями движения небесного тела — с точностью до обозначений. Рассматривать более сложную ситуацию, когда несколько зарядов движутся относительно друг друга, методически нецелесообразно.

Если рассматривать систему из двух зарядов противоположных знаков, то ситуация полностью аналогична задаче двух тяготеющих тел, обсуждавшейся выше. Если же рассмотреть движение заряда, одноименного по знаку с тем, который находится в начале координат, то в соответствующих уравнениях просто сменятся знаки; однако траектории движения будут совсем непохожи на траектории движения в случае разноименных зарядов. Соответствующее моделирование вполне посильно учащимся, особенно если эта тема следует за моделированием движения небесных тел.

После проведения простых численных экспериментов по моделированию движения заряженного тела можно перейти к более сложным проектам исследовательского характера. Задания для таких проектов можно найти, в частности, в задачнике [5].

Моделирование физических процессов в приближении сплошной среды. Целью этих занятий является как углубление навыков моделирования физических процессов, так и выработка реального понимания понятия «сплошная среда», столь важного в физическом мире. Кроме того, возникает возможность еще раз продемонстрировать в работе прием дискретизации, фундаментальный для информатики.

План занятий по этой теме может быть следующим. Вначале проведите лекцию на тему, что отражает абстрактное понятие «сплошная среда». Физические примеры — жидкости, газы; близкие примеры из самой информатики — графическая информация, звуковая информация и т.д. Напомните учащимся, что при описании явлений, проистекающих в сплошной среде, свойства объекта описываются с помощью непрерывных величин (функций). Примеры, которые здесь уместны, связаны с диффузией, теплопроводностью, потоками жидкости и газа, распространением электромагнитных волн и др.

На той же лекции уместно рассмотреть вопрос о роли научной графики в компьютерном моделировании. Так, при моделировании процесса теплопроводности стоит задача наиболее наглядно показать динамику изменения температуры. При этом уместно прибегнуть к условной раскраске или условному контрастированию — мощному приему научной графики. Он находит широчайшее применение и представляет собой набор приемов по максимально удобной, хотя и условной, визуализации результатов компьютерного моделирования.

Например, в различных исследованиях температурных полей возникает проблема наглядного представления результатов. Самый простой (и весьма неэффективный) — привести карту (чертеж, план), в некоторых точках которой обозначены значения температуры. Другой способ — набор изотерм — гораздо эффективнее. Можно добиться еще большей наглядности, учитывая, что большинству людей свойственно, сравнивая разные цвета, воспринимать красный как «горячий», голубой как «холодный», а все остальные — между ними. Наглядность достигается окрашиванием самого «горячего» участка в ярко-красный цвет, самого «холодного» — в ярко-голубой, а остальных — в промежуточные цвета. Получится наглядная картина температурного поля.

А что делать, если дисплей монохромный? Или если изображение нужно перенести с цветного дисплея на бумагу при отсутствии возможности цветной печати? Тогда роль цвета может сыграть контраст. Сделаем самый «горячий» участок самым темным, самый «холодный» — прозрачным, а остальные — между ними. Эффектность, конечно, меньше, чем при цветовой раскраске, но определенная наглядность достигается.

То же самое можно делать и при иллюстрации температурного поля на поверхности обрабатываемой на станке детали, и поля температур, полученного путем радиолокации поверхности далекой планеты, и во множестве других задач.

Для конкретного моделирования явлений в приближении сплошной среды следует отобрать максимально простые задачи, поскольку соответствующие модели достаточно сложны. Такие задачи могут быть статическими и динамическими. Из статических задач наиболее простыми представляются моделирование распределения поля температур или электростатического поля. Из динамических задач, модели которых рассматривались в школьном курсе информатики, известна задача теплопроводности в стержне — вероятно, самая простая задача такого рода.

Основные цели, преследуемые в данном разделе, таковы:

• углубление математического и физического образования учащихся;

• выработка навыков визуализации абстракций — важной задачи для прикладной информатики в целом.

Остановимся на методике решения задачи моделирования распределения статических полей. Универсальным способом визуализации физического поля, распределенного в некоторой плоской области или в некотором объеме, является построение его изолиний (изоповерхностей).

Как показывает опыт, на данном этапе в подавляющем большинстве случаев следует ограничиться моделированием распределений полей в плоскости. Объемные построения требуют большого времени и непосильны многим учащимся.

Приступая к рассказу о построении изолиний, вначале приводим доводы в пользу того, что этот прием является удобным для визуализации поля. В курсе физики учащиеся, скорее всего, видели картины силовых линий электрического поля. Построение силовых линий, однако, задача более сложная, чем построение линий равного потенциала (изолиний), а информации дает не больше. Продемонстрируйте учащимся картины изолиний поля, создаваемого изолированным зарядом, парой равных зарядов и покажите, как по ним отчетливо видна общая картина поля. Другими примерами могут быть изотермы, которыми иногда сопровождают прогноз погоды, линии тока жидкости, изолинии концентрации вредных примесей в окружающей среде и т.д.

Далее переходим к технике построения изолиний. За основу можно взять процедуру, описанную в пособиях [5, 9].

Задачи, уместные для отладки первых навыков такого моделирования, очень просты. Пробной (тестовой) задачей является моделирование поля одиночного заряда, для которого ответ очевиден: любая изолиния — окружность. Затем следуют простые симметричные комбинации зарядов.

Обсудите теперь методику проведения занятий по моделированию процесса переноса тепла в стержне. Эта тема уместна лишь при достаточно высокой математической подготовке учащихся, потому что в данном разговоре трудно избежать появления дифференциальных уравнений (хотя и возможно), причем уравнений в частных производных. Однако опыт показывает, что если не обсуждать сложных вопросов о таких уравнениях, не вдаваться в общие математические рассуждения, то на эмпирическом уровне тема вполне посильна для хорошо подготовленных учащихся и воспринимается ими с интересом.

Последовательность построения учебного процесса может быть следующей. О том, что такое теплопроводность, интуитивно все знают. Если рассматривать простейшую ситуацию — распространение тепла в однородном стержне с теплоизолированной боковой поверхностью — то понятно, что температура (основная характеристика процесса) является функцией единственной координаты и времени. В простейшей модели боковая поверхность стержня считается теплоизолированной, т. е. через нее нет обмена теплом с окружающей средой.

Вывод уравнения теплопроводности можно найти в ряде пособий, причем надо идти не от общего к частному (такой путь школьникам непосилен), а обращаться именно к простейшей ситуации однородного стержня с теплоизолированной боковой поверхностью. При этом, как обычно в таких случаях, вначале появляются приближенные конечно-разностные уравнения, затем от них (с помощью двух предельных переходов — по координате и по времени) переходят к дифференциальным уравнениям. Поскольку при компьютерном моделировании мы всецело опираемся на численные мето,а?ы, то для решения дифференциальных уравнений мы вновь строим конечно-разностную модель. Такая «двухъярусная» дискретизация весьма поучительна с точки зрения информатики. Естественно, нескольких пунктов этой программы можно избежать и вообще исключить появление дифференциальных уравнений, хотя кое-что при этом остается недоговоренным; у математика такой подход порождает чувство неудовлетворенности.

Уравнение теплопроводности сопровождается начальными и краевыми условиями, делающими постановку задачи физически однозначной. (Последнее утверждение доказать на данном уровне изложения невозможно, но интуитивно приемлемые доводы привести легко.) Начальное условие задает распределение температуры в стержне в начальный момент времени; краевые условия (их должно быть в данном случае два) указывают в простейшем варианте (которым вполне достаточно в данном случае ограничиться), какая температура поддерживается на концах стержня.

Подчеркнем, что моделирование процесса теплопроводности связано с дискретизацией как временного изменения температуры, так и пространственного. Если для пространственных производных использовать простейшие центрально-разностные аппроксимации, а по времени — схему Эйлера, то величины {uik} — значения температуры в i-ом узле пространственной сетки в k - ймомент времени — приближенно находятся из системы весьма простых формул.

Если задаться целью получения уравнений модели сразу в конечно-разностной форме (минуя дифференциальную), то возникает нетривиальная задача вывода соответствующих формул, решение которой можно позаимствовать в задачнике [6].

При описанном моделировании не следует забывать о возможной неустойчивости простейшей разностной схемы. Прежде всего следует объяснить учащимся само понятие «неустойчивость». Рассуждаем примерно следующим образом. Расчетные формулы появились как дискретная аппроксимация непрерывного процесса. Чем мы расплачиваемся за дискретизацию? Первая «расплата» очевидна: мы получаем приближенное описание процесса. Числа uik отнюдь не являются точными значениями температуры. Для увеличения точности результатов кажется естественным уменьшать шаги по координате и по времени, но здесь мы сталкиваемся со второй проблемой. Ее природа достаточно сложна, она уходит как в аппроксимацию производных конечными разностями, так и в накопление погрешностей округлений. При неудачном выборе шагов по координате и по времени решение начинает «раскачиваться» и перестает походить на истинное. В данном случае достаточно ограничиться приведением критерия устойчивости метода, приводящего к используемым расчетным формулам.

Тема «Имитационные стохастические модели»

 

Имитационное моделирование может стать существенной частью профильного курса информатики, ориентированного на моделирование. Включение метода имитационного компьютерного моделирования в профильный курс, ориентированный на моделирование, работа учащихся с имитационными моделями средней сложности представляют несомненный интерес и пользу, поскольку расширяют и обобщают представление о методе моделирования и его возможностях.

Идея имитационного моделирования интуитивно ясна и привлекательна. В основе этого метода — теория вычислительных систем, статистика, теория вероятностей.

Начало изучения темы — лекция об имитационном моделировании случайных процессов. К сожалению, в российской школе понятия теории вероятностей и математической статистики лишь начинают внедряться в курс математики, и учителю следует быть готовым к тому, чтобы самому сделать введение в этот важнейший для формирования мировоззрения и математической культуры материал. Приведем план соответствующей вводной лекции.

1. «Случайность» как фундаментальное математическое понятие. Случайные события и их вероятности.

2. Дискретные и непрерывные случайные величины. Дифференциальная функция распределения непрерывной случайной величины (плотность вероятности).

3. Примеры типичных функций распределения. Равновероятное распределение. Нормальное распределение и представление об его особой значимости в связи с центральной предельной теоремой теории вероятностей.

4. Метод статистических испытаний в моделировании случайных процессов. Представление о статистической обработке результатов, получаемых при использовании метода статистических испытаний. Понятия «доверительный интервал», «доверительная вероятность». Вычисление средних значений испытуемых величин и оценка их достоверности.

5. Описание принципов имитационного моделирования. Отметим ключевые моменты, которые следует донести до учащихся. Имитацию целесообразно использовать:

• если она позволяет экспериментально исследовать сложные внутренние взаимодействия в рассматриваемой системе;

• при изучении воздействия на функционирование системы некоторых информационных и организационных изменений, а также изменений во внешней обстановке; для этого в модель системы вносят изменения и наблюдают влияние этих изменений на изменение системы;

• при детальном наблюдение имитируемой системы, что позволяет лучше понять систему и разработать такие предложения по ее имитации, которые были бы невозможны без имитации;

• если имитация сложных систем может дать представление о том, какие из переменных системы наиболее существенны и как эти переменные взаимодействуют.

Подчеркнем, что речь идет об элементарном введении в круг обсуждаемых понятий. В принципе сделать это можно не более, чем за два-три урока.

После этого обсуждаем технические вопросы, связанные с генерацией на ЭВМ последовательностей случайных чисел с заданным законом распределения. Опираться при этом можно на простой факт: в каждом языке программирования есть датчик равномерно распределенных случайных чисел на отрезке от 0 до 1. На данном этапе нецелесообразно вдаваться в сложный вопрос о принципах его реализации. Опираясь на эти датчики, показываем, как можно устроить:

а) генератор равномерно распределенных случайных чисел на любом отрезке [а, b];

б) генератор случайных чисел под практически любой закон распределения (например, используя интуитивно ясный метод «отбора — отказа»).

Одним из вариантов отработки навыков имитационного стохастического моделирования является рассмотрение задачи моделирования очереди в системе массового обслуживания. Указанные системы элементарны для понимания постановки задач, имеют широкое прикладное значение.

Начать рассмотрение этой задачи целесообразно с обсуждения истории решения проблем массового обслуживания (задача Эр-ланга об обслуживании запросов на телефонной станции). Затем следует обзор типичных задач этой науки. Следует сказать о постановке задач в аналитической форме и о трудностях их решения, о том, что имитационное компьютерное моделирование при решении задач массового обслуживания, реализуемое в виде метода статистических испытаний (метода Монте-Карло), хоть и не является в теории массового обслуживания основным, но играет в ней важную роль. Основная линия в ней — получение аналитических результатов, т. е. представленных формулами. Однако возможности аналитических методов весьма ограничены, в то время как метод статистических испытаний универсален и весьма прост для понимания (по крайней мере, кажется таковым).

Затем следует рассмотреть простейшую задачу, которую можно сформулировать на примере формирования и обслуживания очереди в магазине с одним продавцом. В этот магазин случайным образом входят покупатели. Если продавец свободен, то он начинает обслуживать покупателя сразу, иначе покупатель становится в очередь. Детали постановки и решения этой задачи методом статистического моделирования можно найти в книгах [9, 33]. Отметим, что на первом этапе моделирования распределения случайных величин на входе можно принять равновероятными, что хоть и не реалистично, но снимает ряд трудностей (для генерации случайных чисел можно просто использовать встроенный в язык программирования датчик).

Обратите внимание учащихся на то, какие вопросы ставятся в первую очередь при моделировании систем такого вида? Во-первых, это вычисление средних значений (математических ожиданий) некоторых случайных величин. Например, какое среднее время приходится стоять в очереди к прилавку? Или найти среднее время, проведенное продавцом в ожидании покупателя.

Задача учителя, в частности, состоит в том, чтобы разъяснить, что выборочные средние величины сами по себе — случайные величины; в другой выборке того же объема они будут иметь другие значения (при больших объемах выборки — не слишком отличающиеся друг от друга). Далее возможны варианты, например, в более подготовленной аудитории можно показать способ оценивания доверительных интервалов, в которых находятся математические ожидания соответствующих случайных величин при заданных доверительных вероятностях (известных из математической статистики методами без попытки обоснования). В менее подготовленной аудитории можно ограничиться чисто эмпирическим утверждением, к примеру, если в нескольких выборках равного объема средние значения совпали в некотором десятичном знаке, то этот знак, скорее всего, верен. Если при моделировании не удается достичь желаемой точности, следует увеличить объем выборки.

В наиболее подготовленной в математическом отношении аудитории можно ставить вопрос: каково распределение случайных величин, являющихся результатами статистического моделирования, при заданных распределениях случайных величин, являющихся его входными параметрами? Поскольку изложение соответствующей математической теории в данном случае невозможно, следует ограничиться эмпирическими приемами: построением гистограмм итоговых распределений и сравнением их с несколькими типичными функциями распределения.

После отработки первичных навыков указанного моделирования переходим к более реалистической модели, в которой входные потоки случайных событий распределены по Пуассону. Это потребует от учащихся дополнительно освоить метод генерирования последовательностей случайных чисел с указанным законом распределения.




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 504; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.