КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема 6.1.Если A - бесконечное ограниченное множество, то существует предельная точка множества A
(Примечание к формулировке теоремы: множество A ограниченное -это означает, что ; бесконечное –т.е. содержит бесконечно много точек.) Доказательство. Рассмотрим отрезок . Разделим его на 2 части. Хотя бы в одну из половин отрезка входит бесконечное множество точек A. Возьмем полученный отрезок и тоже разделим его на 2 части. Хотя бы один из полученных отрезков тоже содержит бесконечное множество точек из A. Продолжим процесс деления отрезков. В итоге имеем систему стягивающихся отрезков. По теоремам (5.3, 5.4) эта система имеет единую для всех отрезков точку с. Утверждаем, что точка c - предельная точка множества A. Выберем произвольную окрестность и в ней окрестность . После этого возьмем n такое, чтобы длина отрезка , равная , оказалась меньше , т.е. .
Так как, очевидно, (см. рис. 5), и так как содержит, по построению, бесконечное множество точек из A, проколотая окрестность , также содержит бесконечное множество точек из А. Итак, доказано, что произвольная окрестность содержит точки из А. Следовательно, с – предельная точка множества А. В дополнение сформулируем и докажем еще одно важное свойство предельных точек.
Дата добавления: 2015-04-24; Просмотров: 707; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |