КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Как найти направляющие косинусы вектора
Обозначьте через альфа, бета и гамма углы, образованные вектором а с положительным направлением координатных осей (см. рис.1). Косинусы этих углов называются направляющими косинусами вектора а. Инструкция Так как координаты а в декартовой прямоугольной системе координат равны проекциям вектора на координатные оси, то Следует отметить основное свойство направляющих косинусов. Сумма квадратов направляющих косинусов вектора равна единице. Первый способ Пример: дано: вектор а={1, 3, 5). Найти его направляющие косинусы. Второй способ При нахождении направляющих косинусов вектора а, можно использовать методику определения косинусов углов с помощью скалярного произведения. В данном случае в виду имеются углы между а и направляющими единичными векторами прямоугольных декартовых координат i, j и k. Их координаты {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, соответственно. Если угол между векторами ф, то скалярное произведение двух ветров (по определению) – это число, равное произведению модулей векторов на cosф. (a, b) = |a||b|cos ф. Тогда, если b=i, то (a, i) = |a||i|cos(альфа), Вопрос 6. Векторное произведение: определение и свойства. Площадь параллелограмма и треугольника.Выражение скалярного произведения через координаты. Примеры. В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов и есть вектор , где - координатные векторы. Это определение дает нам векторное произведение в координатной форме. Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты , во второй строке находятся координаты вектора , а в третьей – координаты вектора в заданной прямоугольной системе координат:
Дата добавления: 2015-04-24; Просмотров: 1355; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |