Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Функции нескольких переменных




32.

31.

Интегрирование по частям
 
Пусть u (x) и v (x) являются дифференцируемыми функциями. Дифференциал произведения функций u и v определяется формулой Проинтегрировав обе части этого выражения, получим или, переставляя члены, Это и есть формула интегрирования по частям.
Пример 1
 
Вычислить интеграл . Решение. Используем формулу интегрирования по частям . Пусть . Тогда Следовательно,

33. Формула Ньютона — Лейбница.

 

Сравнивая формулы площади криволинейной трапеции


и

 

делаем вывод: если F — первообразная для f на [а; b] то


(1)

 

33. Формула (1) называется формулой Ньютона — Лейбница. Она верна для любой функции f, непрерывной на отрезке [а; b

Сформулируем некоторые свойства определенного интеграла в предположении, что подынтегральная функция ограничена на отрезке, по которому она интегрируется.

  • Если функция интегрируема на [ a; b ], то она интегрируема на любом отрезке
  • Для любых a, b и c
  • Интеграл обладает свойством линейности: для любых функций f (x) и g (x) и любой постоянной A
  • Если f (x) и g (x) интегрируемы на [ a; b ], то f (x) · g (x) также интегрируема на этом отрезке.
  • Если f (x) – периодическая функция с периодом T, то для любого a

34. Замена переменной в определённом интеграле. Теорема. Пусть функция

    1. определена, непрерывно дифференцируема и монотонна на отрезке ,
    2. ,
    3. функция непрерывна на отрезке [ a, b ].

Тогда .

Док-во. Пусть F (x) - первообразная для функции f (x), т.е. , тогда - первообразная для функции . , что и требовалось доказать.

При решении задач нельзя забывать о том, что при переходе к новой переменной надо обязательно вычислить новые пределы интеграла.
Пример:

.

35. Теорема 2. Если u (x) и v (x) - две функции, заданные на промежутке [ a, b ] и имеющие там непрерывные производные, то

(24)

Формула (24) есть формула интегрирования по частям для определенных интегралов.

Доказательство очень просто. Именно,

Так как по формуле интегрирования по частям будет

то

откуда и следует (24).

Пример 1.

Здесь применена подстановка ln x = z (причем формула (22) прочитывалась слева направо).\


Функции двух переменных

Приращение функции

 


Функция, дифференцируемая в точке

 

при

В этом случае дифференциал функции в точке :

- частные производные, вычисленные в точке .


Дифференцирование композиции

 

1. Если то

2. Если то:


Однородная функция степени k

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.