КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Функциональные ряды
Формально записанное выражение (25) где - последовательность функций от независимой переменной x, называется функциональным рядом. Примерами функциональных рядов могут служить: (26) (27) Придавая независимой переменной x некоторое значение и подставляя его в функциональный ряд (25), получим числовой ряд Если он сходится, то говорят, что функциональный ряд (25) сходится при ; если он расходится, что говорят, что ряд (25) расходится при . 41. Степенные ряды Определение Ряд, членами которого являются степенные функции аргумента x, называется степенным рядом: Часто рассматривается также ряд, расположенный по степеням (x − x 0), то есть ряд вида где x 0 − действительное число. Интервал и радиус сходимости Рассмотрим функцию . Ее областью определения является множество тех значений x, при которых ряд сходится. Область определения такой функции называется интервалом сходимости. Если интервал сходимости представляется в виде , где R > 0, то величина R называется радиусом сходимости. Сходимость ряда в конечных точках интервала проверяется отдельно. или на основе признака Даламбера: 42. Дифференциальные уравнения 1. Основные понятия Определение. Уравнение вида Уравнения с разделяющимися переменными
Самым простым примером уравнения первого порядка является уравнение с разделяющимися переменными. Дифференциальное уравнение , допускающее запись в виде , а также уравнение в дифференциалах, которое можно записать в форме называются уравнениями с разделяющимися переменными. Предполагается, что функция определена и непрерывна на отрезке , а функция определена и непрерывна на отрезке . Для решения такого уравнения надо обе его части умножить или разделить на такое выражение, чтобы в одну часть уравнения входило только в другую – только , а затем проинтегрировать обе части. При делении обеих частей уравнения на выражение, содержащее и могут быть потеряны решения, обращающие это выражение в нуль.
43. 2. Линейные дифференциальные уравнения первого порядка Определение. Уравнение вида y'+ ρ(x) y=f (x), где ρ(x) и f (x) непрерывные функции, называется линейным дифференциальным уравнением первого порядка. ние является линейным.
Дата добавления: 2015-04-24; Просмотров: 379; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |