КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Геометрический смысл производной. Физический смысл производной
Физический смысл производной. Физический и геометрический смысл производной Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная – скорость изменения переменной y относительно переменной x в точке . Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная – скорость в момент времени . Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то – скорость изменения количества электричества в момент времени , т.е. сила тока в момент времени . Пусть – некоторая кривая, – точка на кривой . Любая прямая, пересекающая не менее чем в двух точках называется секущей. Касательной к кривой в точке называется предельное положение секущей , если точка стремится к , двигаясь по кривой. Из определения очевидно, что если касательная к кривой в точке существует, то она единственная
23. Правила дифференцирования При дифференцировании константу можно выносить за производную: Правило дифференцирования суммы функций: Правило дифференцирования разности функций: Правило дифференцирования произведения функций (правило Лейбница): Правило дифференцирования частного функций: Правило дифференцирования функции в степени другой функции: Правило дифференцирования сложной функции: Правило логарифма при дифференцировании функции: ПРОИЗВОДНЫЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ
Дата добавления: 2015-04-24; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |