КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение производной. Пусть функция y=f(х) определена в некоторой окрестности точки х0
Пусть функция y=f(х) определена в некоторой окрестности точки х0. Для любой точки х из этой окрестности приращение Dx определяется формулой Dx=х – х0, откуда х=х0 + Dx. Приращением функции y=f(x) в точке х0 называется разность Dу=f(x) – f(x0)=f(x0 + Dx) – f(x0). Производной от функции у=f(x) в точке х0 называется предел отношения приращения функции к приращению аргумента (), когда приращение аргумента стремится к нулю (Dx →0). Производная функции у=f(x) в точке х0 обозначается y'(х0) или f'(х0). Определение производной можно записать в виде формулы: '()= = . Если функция в точке х0 имеет конечную производную, то она называется дифференцируемой в точке х0. Если она дифференцируема во всех точках промежутка X, то говорят, она дифференцируема на всём этом промежутке. Конечно, может не существовать. В этом случае говорят, что функция f(x) не имеет производной в точке х0. Если равен или , то говорят, что функция f(x) имеет в точке х0 бесконечную производную (равную или , соответственно).
Как вычисляют производную? 1. Записывают функцию в виде y=f(х). 2. Вычисляют Dy – приращение функции: Dу=f(x+ Dx) – f(x). 3. Составляют отношение 4. Представляют, что Dx стремится к нулю, и переходят к пределу = y'(х0). 5. Вычисляют производную в точке х0: y'(х) = y'(х0).
Дата добавления: 2015-05-10; Просмотров: 951; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |