КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Повторные независимые испытания. Формула Бернулли
Решение задач с помощью числа сочетаний. Определение сочетания: Пусть имеется N элементов. Составляем из них комбинации, содержащие M элементов. Если порядок элементов внутри комбинации не играет роли, то такие комбинации называются сочетаниями. Число таких сочетаний определяется формулой:
Пример: N=10; M=3 Пример: В студенческой группе 20 человек. Среди них 7 юношей и 13 девушек. Случайным образом отбирают 3-х человек для дежурства. Какова вероятность того, что: А) все три юноши. Б) все три девушки. В) две девушки и один юноша. Г) хотя бы 1 юноша.
А) Б) В)
Г) "хотя бы один юноша" Пусть событие А может произойти в любом из n испытаний с постоянной вероятностью р, не зависящей от исходов других испытаний. Такие испытания называются повторными независимыми, или схемой Бернулли. Если событие А произошло m раз, то говорят, что произошло m успехов в n испытаниях. Если р – вероятность успеха, то q = 1 – р – вероятность неуспеха.
Дата добавления: 2015-05-26; Просмотров: 520; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |