КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Асимптотические формулы
Формула Бернулли. Вероятность того, что событие А произойдет m раз в n повторных испытаниях (m успехов в n испытаниях) определяется формулой: (14) Пример: Пусть стрелок делает 3 выстрела. Вероятность попадания при каждом выстреле равна р. Найти вероятность тому, что он попал 2 раза при трех выстрелах. Решение: n = 3; m = 2; p - постоянная; q = 1 – p;
Пример: Вероятность того, что станок потребует внимания рабочего в течение рабочего дня равна 0,2. всего рабочий обслуживает 4 станка. Найти вероятность того, что хотя бы один из них потребует внимания рабочего. Решение: n = 4; m ≥ 1; p – 0,2; q = 0,8; При большом количестве испытаний n формула Бернулли не удобна для вычислений, поэтому применяется приближенные формулы, результаты которых тем точнее, чем больше n. Формула Пуассона (для редких событий). Пусть событие А может произойти в любом из n повторных независимых испытаний с постоянной вероятностью р, отличной от 0 и 1. Пусть количество испытаний n достаточно велико, а вероятность р мала, т.е. выполняются условия Пуассона: тогда справедлива формула Пуассона: (15) Замечания: 1. Функция, стоящая в правой части формулы 2 называется функцией Пуассона. Значение этой функции определяется по двум параметрам λ и m. 2. Формула 2 является приближенной, а формула 1 точной. Пример: Вероятность изготовления стандартной детали равна 0,995. Найти вероятность того, что среди 1000 деталей будет более 3-х браков. Решение: n = 1000 ≥ 100; m > 3; p = 0,005; q = 0,995;
Дата добавления: 2015-05-26; Просмотров: 1220; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |