Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 3.2




. (3.4)

Решение. Здесь , , следовательно, (3.4) – уравнение в полных дифференциалах. Сгруппируем его члены так:

Тогда

, ,

и уравнение (3.4) можно записать в виде:

или

Следовательно,

есть общий интеграл дифференциального уравнения (3.4).

 

Интегрирующий множитель. Если условие не выполнено, то дифференциальное уравнение

не является уравнением в полных дифференциалах. Однако это уравнение иногда можно превратить в уравнение в полных дифференциалах, умножив его на подходящую гладкую функцию . Такая функция носит название интегрирующий множитель. Интегрирующий множитель не всегда бывает легко найти.

Чтобы уравнение было уравнением в полных дифференциалах, должно быть выполнено условие:

,

или

откуда следует

. (3.5)

Если зависит только от (не зависит от ), то можно искать частное решение (3.5) в виде . При этом и (3.5) примет вид:

(3.6)

откуда интегрированием получим .

Аналогичное соотношение для случая имеет вид

. (3.7)

Уравнение (3.7) можно проинтегрировать, если его правая часть не зависит от .




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 287; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.