Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Макс Гендель 3 страница




Синдром Вольфа - Паркинсона - Уайта (синдром WPW, синдром преждевременного возбуждения). Отличительной чертой этого синдрома является то, что возбуждение к желудочкам приходит двумя путями: а) через АВ-узел и б) по так называемому пучку Кента (аномальный дополнительный путь проведения импульса между предсердиями и желудочками). При этом происходит взаимное наложение проводимых импульсов и в 50% случаев возникает желудочковая тахиаритмия. Как известно, в норме волна возбуждения из синусного узла распространяется по предсердиям и достигает атривентрикулярного узла, где происходит задержка проведения импульса (атриовентрикулярная задержка), поэтому желудочки сокращаются после предсердий с небольшим опозданием. Однако у пациентов с синдромом WPW между предсердиями и желудочками имеется дополнительный путь проведения - пучок Кента, по которому импульс проходит без всякой задержки. По этой причине желудочки и предсердия могут сокращаться одновременно, что ведет к нарушению внутрисердечной гемодинамики и снижает эффективность насосной функции сердца.

Кроме того, опасность представляет и столкновение импульса из атриовентрикулярного узла с волной возбуждения, поступившей в желудочек по пучку Кента. Это может вызвать появление желудочковой экстрасистолы (внеочередного сокращения желудочка сердца). Если импульс поступит из АВ-узла в тот момент, когда желудочки находятся в фазе относительной рефрактерности, т.е. тогда, когда процесс реполяризации еще полностью не завершен, то желудочковая экстрасистола может индуцировать появление желудочковой тахикардии или даже фибрилляции. В силу этого период относительной рефрактерности получил название ранимой фазы сердечного цикла. На ЭКГ этот период соответствует зубцу Т.

Выделяют три основных электрокардиографических признака синдрома WPW: а) укороченный интервал P-R на фоне синусового ритма; б) «растянутый» сверх нормы комплекс QRS с пологой начальной частью; в) вторичные изменения сегмента S-T, при которых зубец Т направлен дискордантно (в обратном направлении) по отношению к комплексу QRS.

 

Факторы, приводящие к нарушениям сердечного ритма

Все причины многочисленных тахи- и брадиаритмий можно условно подразделить на четыре группы: 1) нарушения нейрогенной и эндокринной (гуморальной) регуляции электрофизиологических процессов в специализированных или сократительных клетках сердца; 2) органические поражения миокарда, его аномалии, врожденные или наследственные дефекты с повреждением электрогенных мембран и клеточных структур; 3) сочетание нарушений нейрогуморальной регуляции ритма и органических заболеваний сердца; 4) аритмии, вызванные лекарственными препаратами. Таким образом, практически любое заболевание кровеносной системы может осложниться нарушениями сердечного ритма. Однако в данном разделе рассматриваются только аритмии, связанные с нарушениями нейрогуморальной регуляции сердечного ритма или с употреблением некоторых лекарственных препаратов.

Нарушения нейрогенной и эндокринной регуляции электрофизиологических процессов в кардиомиоцитах и клетках проводящей системы сердца. Одной из основных причин нарушений сердечного ритма и проводимости является изменение физиологического соотношения между тонической активностью симпатических и парасимпатических элементов, иннервирующих серд-це. Важно отметить, что повышение тонической активности симпатического звена вегетативной нервной системы способствует возникновению аритмий, в то время как стимуляция n.vagus, как правило, повышает электрическую стабильность сердца.

Описаны расстройства сердечного ритма, связанные с заболеваниями головного мозга, особенно часто с нарушениями мозгового кровообращения. Большой интерес вызывают спонтанные, психогенные по своей природе аритмии у больных неврозами, психопатиями, вегетативной дистонией. Число аритмий психосоматического генеза в наше время увеличивается.

В эксперименте на животных практически любую из известных форм аритмий - от простой синусовой тахикардии до фибрилляции желудочков - можно вызвать, воздействуя на некоторые отделы головного мозга: кору, лимбические структуры и в особенности гипоталамо-гипофизарную систему, с которой тесно связаны находящиеся в ретикулярной формации продолговатого мозга центры симпатической и парасимпатической регуляции сердечной деятельности. Одним из наиболее ярких примеров нарушений ритма, обусловленных дисбалансом симпатического и парасимпатического звеньев вегетативной нервной системы, является снижение электрической стабильности сердца при психоэмоциональном стрессе. По данным P.Reich et al. (1981), психологический стресс в 20-30% случаев предшествует появлению угрожающих жизни сердечных аритмий. Патогенез стресс-индуцированных аритмий весьма сложен и до конца неясен. Вполне возможно, что он связан с прямым воздействием катехоламинов на миокард. Вместе с тем известно, что высокие концентрации адреналина в крови, активируя b-адренорецепторы почечных канальцев, способствуют усилению экскреции К+ и развитию гипокалиемии. Последняя вызывает нарушения процессов реполяризации, создавая условия для развития самих опасных желудочковых тахиаритмий, в том числе желудочковой фибрилляции и внезапной сердечной смерти. Фармакологическая или хирургическая симпатэктомия устраняет влияние различных типов стресса на ритм сердца и повышает электрическую стабильность миокарда. Такой же эффект оказывает и стимуляция блуждающего нерва, которая способствует угнетению высвобождения норадреналина из окончаний симпатических нервов и ослаблению адренореактивности сердца.

Говоря о роли эндокринных нарушений в патогенезе аритмий, следует указать, что избыточная продукция тиреоидных гормонов способствует увеличению количества адренорецепторов в миокарде и повышению их чувствительности к эндогенным катехоламинам. По этой причине у больных тиреотоксикозом, как правило, наблюдаются тахикардия и нарушения сердечного ритма, обусловленные повышением адренореактивности сердца. Одной из частых «эндокринных» причин нарушений электрической стабильности сердца является избыточное образование минералокортикоидов в коре надпочечников (первичный и вторичный альдостеронизм). Реже аритмии возникают при гиперсекреции глюкокортикоидных гормонов (болезнь и синдром Иценко - Кушинга) или длительном приеме их фармакологических аналогов.

Механизм аритмогенного эффекта минералокортикоидов и, прежде всего, наиболее активного из них - альдостерона - связан с дисбалансом Na+/K+ в организме. Альдостерон, действуя на почечные канальцы, вызывает задержку в организме Na+и усиление экскреции K+, в результате чего возникает гипокалиемия, которая способствует нарушению процессов реполяризации и возникновению аритмий по триггерному механизму (см. ниже). Умеренное аритмогенное влияние глюкокортикоидов обусловлено тем, что природные (гидрокортизол, кортизол, кортикостерон) и синтетические (преднизолон, дексаметазон) гормоны этой группы не являются «чистыми» глюкокортикоидами, они обладают слабым сродством к рецепторам альдостерона в почечных канальцах. Именно этим свойством объясняется способность данных биологически активных веществ провоцировать аритмии у пациентов, получающих их длительное время.

Аритмии, вызванные лекарственными препаратами. Часто причиной аритмий являются лекарственные препараты, обладающие собственной аритмогенной активностью. В первую очередь это относится к сердечным гликозидам и диуретикам. Мочегонные препараты, усиливая экскрецию калия, способствуют возникновению гипокалиемии. Сердечные гликозиды (дигиталис и др.) имеют свойство накапливаться в организме, ингибируя при этом Na+-, K+-АТФазу, локализованную на сарколемме кардиомиоцитов. Снижение активности этого фермента сопровождается снижением уровня К+и увеличением концентрации Na+в саркоплазме. Накопление натрия в цитоплазме кардиомиоцитов приводит к усилению Na+/Ca2+-обмена, что сопровождается активным поступлением Са2+в клетки миокарда и способствует усилению насосной функции сердца. Однако при этом формируется Са2+-перегрузка кардиомиоцитов. Кроме того, снижение внутриклеточной концентрации К+вызывает замедление процессов реполяризации и тем самым способствует возникновению ранних деполяризаций и аритмий по механизму триггерного автоматизма.

Лекарственные аритмии могут быть вызваны и антиаритмическими препаратами. У больных ХСН, длительное время получавших блокаторы Na+-каналов (флекаинид, этацизин и др.) или блокатор К+-каналов D-соталол, повышается частота случаев внезапной сердечной смерти и сокращается общая продолжительность жизни. Было установлено, что D-соталол ингибирует К+-каналы, что ведет к замедлению процесса реполяризации, возникновению ранних реполяризаций и опасных желудочковых аритмий по механизму триггерного автоматизма. Механизм аритмогенного действия блокаторов Na+-каналов у пациентов с ХСН неизвестен.

 

Патогенез нарушений сердечного ритма

Следует выделить два основных механизма нарушений ритма сердечных сокращений: 1) патологию образования импульса (нарушения автоматизма и повышение возбудимости) и 2) дефекты проведения импульса (блокады и механизм re-entry). Однако чаще всего аритмии возникают при участии обоих механизмов.

 

Патология образования импульса

Нарушения автоматизма синусового узла и латентных водителей ритма. Различают нарушения нормального автоматизма, т.е. автоматизма синусового узла, и появление аномального автоматизма, который обусловлен активацией пейсмекерной функции в клетках проводящей системы, не являющихся в норме водителями ритма (АВ-узел, ножки пучка Гиса, волокна Пуркинье).

Как известно, в основе процесса любого автоматизма лежит медленная спонтанная диастолическая деполяризация, постепенно понижающая мембранный потенциал до порогового уровня, с которого начинается быстрая деполяризация мембраны, или фаза 0 потенциала действия (ПД) (рис. 145).В кардиомиоцитах рабочего миокарда и в специализированных клетках потенциал покоя обеспечивается за счет высокой активности электрогенной Na+-, K+-АТФазы, которая, в свою очередь, обеспечивает градиент ионов калия и натрия между цитоплазмой клетки и экстрацеллюлярным пространством. Кроме того, потенциал покоя поддерживается так называемым током утечки К+из саркоплазмы во внеклеточное пространство. Оба эти процесса в совокупности поддерживают отрицательный заряд на внутренней поверхности сарколеммы. В сократительных кардиомиоцитах К+-ток направлен из клетки наружу и в состоянии покоя остается неизменным. В клетках проводящей системы сердца этот ток постепенно уменьшается, что и ведет к развитию медленной спонтанной диастолической деполяризации сарколеммы до пороговой. Особенно сильно выражена способность к подобной деполяризации в клетках синоатриального (СА) узла, именно поэтому данный узел является водителем ритма сердца.

Изменения нормального автоматизма сердца (времени медленной спонтанной деполяризации клеток СА-узла) приводят к возникновению синусовых аритмий. На продолжительность спонтанной деполяризации и, следовательно, на частоту сердечной деятельности оказывают влияние три механизма.

Первый из них (наиболее важный) - скорость спонтанной диастолической деполяризации. При ее возрастании пороговый потенциал возбуждения достигается быстрее и происходит учащение синусового ритма. Противоположный эффект, т.е. замедление спонтанной диастолической деполяризации, ведет к замедлению синусового ритма.

Второй механизм, оказывающий влияние на уровень автоматизма СА-узла, - изменение величины мембранного потенциала покоя его клеток. Когда мембранный потенциал становится более отрицательным (при гиперполяризации клеточной мембраны, например при действии ацетилхолина), требуется больше времени для достижения порогового потенциала возбуждения, если, разумеется, скорость спонтанной диастолической деполяризации остается неизменной. Следствием такого сдвига будет уменьшение числа сердечных сокращений. При снижении мембранного потенциала покоя ЧСС, напротив, возрастает.

Третий механизм - изменение порогового потенциала возбуждения (фактически - чувствительности кардиомиоцитов к электрическому стимулу). Его уменьшение способствует учащению синусового ритма, а увеличение - брадикардии. Величина порогового потенциала возбуждения кардиомиоцитов определяется свойствами Na+-каналов, а клеток проводящей системы - Ca2+- каналов. В связи с этим следует напомнить, что в основе фазы быстрой деполяризации в клетках рабочего миокарда лежит активация быстрых Na+-каналов, а в клетках специализированной ткани сердца - Ca2+-каналов.

Возможны и различные комбинации трех основных электрофизиологических механизмов, регулирующих автоматизм СА-узла.

Аномальный автоматизм (эктопический автоматизм) - это появление пейсмекерной активности в клетках сердца, не являющихся водителями сердечного ритма. В норме эктопическая активность подавляется импульсами, поступающими из СА-узла, но при блокаде проведения импульса по предсердиям главным водителем ритма сердца может стать АВ-узел. Способность к спонтанной деполяризации в элементах этого узла менее выражена, чем в клетках синусового узла, поэтому в условиях поперечной блокады обычно развивается брадикардия.

Еще менее выражена способность к автоматизму у волокон Пуркинье. Однако эти волокна, как и другие клетки проводящей системы, более устойчивы к гипоксии, чем сократительные кардиомиоциты, в связи с чем не всегда погибают в зоне ишемии. Вместе с тем электрофизиологические свойства таких ишемизированных волокон Пуркинье существенно отличаются от параметров интактных волокон тем, что у них появляется пейсмекерная активность, а способность к проведению импульса существенно снижается. Кроме того, спонтанная биоэлектрическая активность, возникающая в этих волокнах, в условиях патологии (например, при глубокой ишемии) перестает подавляться импульсами, поступающими из синусового узла, и может быть причиной возникновения желудочковых экстрасистол.

Повышение возбудимости кардиомиоцитовнаиболее частообусловливает возникновение аритмий по механизму триггерной (наведенной, пусковой) активности. Электрофизиологической основой триггерной активности (триггерного автоматизма) являются ранние и поздние постдеполяризации.

Ранняя постдеполяризация - этопреждевременная деполяризация клеток миокарда и проводящей системы, которая появляется тогда, когда фаза реполяризации потенциала действия еще не завершена, потенциал мембраны еще не достиг диастолической величины, соответствующей потенциалу покоя. Можно указать таких два важнейших условия возникновения ранних постдеполяризаций, как: удлинение фазы реполяризации потенциала действия и брадикардия. При замедлении реполяризации и, соответственно, увеличении общей продолжительности ПД может возникнуть преждевременная спонтанная деполяризация в тот момент, когда процесс реполяризации еще не завершился. При уменьшении частоты основного ритма сердца (брадикардия) происходит постепенное возрастание амплитуды ранних постдеполяризаций. Достигнув порога возбуждения, одна из них вызывает образование нового ПД еще до завершения исходного. Этот преждевременный ПД рассматривается как триггерный (наведенный), поскольку он обязан своим возникновением ранней постдеполяризации, исходящей от основного ПД. В свою очередь, второй (наведенный) ПД за счет своей ранней постдеполяризации может вызвать третий, тоже триггерный ПД, а третий ПД - четвертый триггерный ПД и т.д. Если источник триггерной активности находится в желудочках, то на ЭКГ подобный тип нарушений образования импульсов проявляется, как желудочковая экстрасистолия или полиморфная желудочковая тахикардия.

Поскольку ранние постдеполяризации реализуются за счет активации Na+- и Са2+-каналов, супрессировать связанные с ними нарушения сердечного ритма можно с помощью блокаторов названных каналов. Кроме того, триггерный ритм, вызванный ранними постдеполяризациями, может быть подавлен с помощью электрокардиостимуляции с частотой, превышающей исходный ритм сердца. Возникновению ранних постдеполяризаций способствуют: гиперкатехоламинемия, гипокалиемия, ацидоз, ишемия, синдром удлиненного интервала Q-T. Часто подобный автоматизм является результатом применения антиаритмических препаратов, блокирующих К+-каналы (соталол, хинидин и др.).

Поздние (задержанные) постдеполяризации - это преждевременная деполяризация клеток миокарда и проводящей ткани, которая появляется сразу же после завершения фазы реполяризации, т.е. тогда, когда электрический заряд сарколеммы соответствует диастолическому потенциалу. Подпороговые колебания мембранного потенциала, которые в норме могут присутствовать, но никогда себя не проявляют, при патологических состояниях, вызывающих Са2+-перегрузку кардиомиоцитов, могут возрастать по амплитуде, достигая порога возбуждения. Повышение внутриклеточной концентрации ионов кальция вызывает активацию неселективных ионных каналов, обеспечивающих усиленное поступление катионов из внеклеточной среды в кардиомиоцит. При этом в клетку поступают главным образом ионы Na+, концентрация которых в экстрацеллюлярной жидкости намного превышает уровень К+и Са2+. В результате отрицательный заряд внутренней поверхности клеточной мембраны уменьшается, достигая пороговой величины, вслед за чем возникает серия преждевременных ПД. В конечном итоге формируется цепь триггерных возбуждений.

Триггерная активность клеток сердца, связанная с задержанными постдеполяризациями, может возникнуть под действием сердечных гликозидов или катехоламинов. Очень часто она появляется при инфаркте миокарда. В отличие от ранних постдеполяризаций, возникновению (усилению) которых способствует брадикардия, задержанные постдеполяризации, наоборот, стимулируются учащением сердечного ритма. Это, по-видимому, связано с тем, что чем выше ЧСС, тем большее количество ионов кальция поступает в клетку. Следует напомнить, что наиболее частой причиной увеличения [Ca2+]i в цитоплазме может быть активация Na+/Ca2+-обмена в условиях реперфузии миокарда.

 

Дефекты проведения импульса

Существует три основных типа нарушений проводимости: 1)замедление и/или блокада проведения; 2) повторный вход импульса (re-entry); 3) сверхнормальное (супернормальное) проведение.

Замедление проведения, блокада. Причиной замедленного проведения импульса или его блокады нередко бывает снижение количества потенциалзависимых Na+-каналов тех клеток, которым в нормальных условиях присуще свойство быстрой деполяризации (волокна Пуркинье и сократительные кардиомиоциты). Скорость проведения импульсов в этих клетках непосредственно связана с крутизной и амплитудой фазы деполяризации (фаза 0) потенциала действия, т.е. с такими характеристиками, которые как раз и определяются числом активных потенциалзависимых Na+-каналов мембраны. В свою очередь, существует тесная прямая зависимость между числом Na+-каналов, способных к открытию, и величиной мембранного потенциала покоя. Если под влиянием патологических воздействий этот потенциал понижается (приближается к нулевому значению), то уменьшается и скорость деполяризации, а соответственно, замедляется проведение импульса. Так, при уменьшении потенциала покоя до уровня 50 мВ (в норме - 80-90 мВ) инактивируется около половины всех Na+-каналов. В этом случае возбуждение и проведение импульса становятся невозможными. Такая ситуация может иметь место в зоне ишемии инфаркта миокарда.

Однако в определенных случаях даже при значительном уменьшении потенциала покоя проведение импульса, правда существенно замедленное, сохраняется (рис. 146). Такое проведение осуществляется медленными Са2+-каналами и «медленными» Na+-каналами, которые устойчивы к снижению потенциала покоя. В интактном кардиомиоците существуют только быстрые Na+-каналы, но в условиях ишемии одна половина этих каналов инактивируется, другая половина может превратиться в аномальные «медленные» Na+-каналы. Таким образом, «быстрые» клетки превращаются в «медленные» кардиомиоциты, при прохождении через которые импульс может замедлить свое распространение или блокироваться. Причинами блокады могут быть: гипоксия и связанный с ней энергодефицит, вызывающий снижение активности Na+-, K+-АТФазы и уменьшение потенциала покоя, а также гибель кардиомиоцитов и волокон Пуркинье в результате ишемии, апоптоза или дистрофии.

Повторный вход импульса (re-entry). Как возможный механизм сердечных аритмий существование re-entry было доказано еще в 1928 г. Этим термином обозначают явление, при котором импульс, совершающий движение по замкнутому кругу (петле, кольцу), возвращается к месту своего возникновения, совершая круговое движение (circus movement ). Схемы повторного входа представлены на рис. 147.

Различают macro re-entry (макрориентри) и micro re-entry (микрориентри). При таком делении учитывают размеры петли (круга), в которой осуществляется повторный вход.

Для формирования macro re-entry с характерными для него свойствами требуются определенные условия:

а) наличие устойчивой замкнутой петли, длина ее зависит от анатомического периметра невозбудимого препятствия, вокруг которого движется импульс;

б) однонаправленная блокада проведения в одном из сегментов петли re-entry;

в) продолжительность распространения волны возбуждения должна быть короче времени, за которое импульс может преодолеть всю длину петли re-entry. Благодаря этому перед фронтом распространяющегося по кругу импульса имеется участок ткани, вышедший из состояния рефрактерности и успевший восстановить свою возбудимость. Этот сегмент петли обозначен на рис. 147 белым цветом и называется «окном возбудимости». При электрической кардиостимуляции отдела сердца, где существует петля re-entry, весь миокард одновременно переводится в состояние абсолютной рефрактерности, «окно возбудимости» исчезает и циркуляция импульса прекращается. Наиболее наглядно это проявляется при дефибрилляции сердца.

Устранить подобную циркуляцию можно также с помощью удлинения периода рефрактерности. При этом «окно возбудимости» может закрыться, поскольку циркулирующая волна наталкивается на участок, находящийся в состоянии рефрактерности. Добиться этого можно с помощью антиаритмических препаратов, блокирующих К+-каналы, что ведет к замедлению реполяризации и увеличению продолжительности рефрактерного периода. В этом случае «окно возбудимости» закрывается и движение импульса прекращается. Описанный механизм macro re-entry лежит, как полагают, в основе трепетания предсердий.

При другой разновидности повторного входа - micro re-entry - движение импульса происходит по малому замкнутому кольцу, не связанному с каким-либо анатомическим препятствием. По-видимому, многие сложные тахиаритмии, в частности фибрилляции, связаны с механизмом micro re-entry. Сочетания петель, лежащих в разных плоскостях, возникают у больных с желудочковыми тахикардиями в остром периоде инфаркта миокарда.

Очень часто морфологическим субстратом для возникновения re-entry являются волокна Пуркинье, находящиеся в зоне ишемии (рис. 148). Эти клетки устойчивы к гипоксии и могут не погибать в очаге инфаркта. Однако при этом они меняют свои электрофизиологические характеристики таким образом, что быстрые Na+-каналы превращаются в «медленные». В этом случае проведение импульса замедляется и из зоны ишемии он выходит в тот момент, когда остальной миокард уже находится в состоянии относительной рефрактерности и готов к повторному возбуждению, но импульс из синусового узла еще не поступил. Возникает феномен повторного входа (re-entry), когда миокард дважды стимулируется одним и тем же импульсом: первый раз, когда он поступает из синусового узла, и второй раз, когда он повторно выходит из зоны ишемии. В этом случае разорвать петлю re-entry можно с помощью препаратов, блокирующих «медленные» Na+-каналы в зоне ишемии (лидокаин, новокаинамид).

Несомненным достоинством этих антиаритмиков является то, что они проявляют высокое сродство именно к аномальным Na+-каналам в зоне ишемии и практически не ингибируют быстрые Na+-каналы в клетках здорового миокарда, а значит, не влияют на электрофизиологические процессы в интактных кардиомиоцитах.

 

Глава 15

ПАТОФИЗИОЛОГИЯ ДЫХАНИЯ

 

Дыхание - это совокупность процессов, обеспечивающих аэроб­ное окисление в организме, в результате которого освобождается энергия, необходимая для жизни. Оно поддерживается функциониро­ванием нескольких систем: 1) аппарата внешнего дыхания; 2) систе­мы транспорта газов; 3) тканевого дыхания. Система транспорта газов, в свою очередь, подразделяется на две подсистемы: сердечно-­сосудистую и систему крови. Деятельность этих систем тесно связа­на сложными регуляторными механизмами. Поэтому патологический процесс в любом из звеньев указанной системы может быть причиной общего или регионарного нарушения дыхания. Например, при патологии сердечно-сосудистой системы говорят о сердечной или сосудистой недостаточности, в описание которой входят и изменения аппарата внешнего дыхания, и на­рушения тканевого дыхания (гипоксии). Другой пример - гипоксия мозга самого различного происхождения может привести к нарушениям регуля­ции дыхания, в том числе и к фатальным.

Собственно термин «дыхательная недостаточность» принято использо­вать при характеристике нарушений функции аппарата внешнего дыха­ния, хотя это некорректно с позиции системного анализа патологи­ческих явлений в целом организме. Поэтому нарушения функции аппа­рата внешнего дыхания правильнее называть недостаточностью внешнего дыхания.

 

15.1. ПАТОФИЗИОЛОГИЯ ВНЕШНЕГО ДЫХАНИЯ

 

Внешнее дыхание - это совокупность процессов, совершающихся в легких и обеспечивающих нормальный газовый состав артериальной крови. Следует подчеркнуть, что в данном случае речь идет только об артериальной крови, так как газовый состав венозной крови за­висит от состояния тканевого дыхания и транспорта газов в орга­низме. Внешнее дыхание обеспечивается аппаратом внеш­него дыхания, т.е. системой легкие - грудная клетка с дыхательной мус­кулатурой и системой регуляции дыхания. Нормальный газовый состав артериальной крови поддерживается следующими взаимно связанными процессами: 1) вен­тиляцией легких; 2) диффузией газов через альвеолярно-капилляр­ные мембраны; 3) кровотоком в легких; 4) регуляторными механиз­мами. При нарушении любого из этих процессов развивается недос­таточность внешнего дыхания.

 

15.1.1. Недостаточность внешнего дыхания

Недостаточность внешнего дыхания - патологическое состояние, развиваю­щееся вследствие нарушения внешне­го дыхания, при котором не обеспе­чивается нормальный газовый состав артериальной крови или он дости­гается в результате компенсаторных механизмов, приводящих к ограниче­нию резервных возможностей организма. Недостаточность внешнего дыхания может возникнуть и у прак­тически здорового человека при изменении газового состава вдыхае­мого воздуха.

Существует много классификаций недостаточности внешнего дыха­ния. Большинство классификаций создано для диагностики функциональных нарушений при заболеваниях системы дыхания. Однако недостаточность внешнего дыхания может развиваться при заболева­ниях не только системы дыхания, но и системы кровообращения, пище­варения, гепатобилиарной системы, центральной нервной системы и т.д. Поэтому требуется классификация, учитывающая возможность патологи­ческих изменений внешнего дыхания при любой форме патологии.

При классифицировании недостаточности внешнего дыхания нужно прежде всего учитывать темпы ее развития. Для этого применяется термин «форма недостаточности внешнего дыхания»: острая, подострая и хроническая. Далее целесообразно классифицировать поражение основных функциональных звеньев аппарата внешне­го дыхания. Здесь удобно использовать термин «вид недостаточности внешнего дыхания». Наконец, недостаточность внешнего дыхания необ­ходимо классифицировать по глубине функциональных нарушений и выде­лять соответственно стадии, или функциональные классы.

Формы недостаточности внешнего дыхания. Острая недостаточность внешнего дыхания развивается в течение минут, часов. Примером острой недостаточности внешнего ды­хания может быть быстро развивающийся приступ удушья при бронхиальной астме, сердечной астме, при острой пневмонии.

Подострая недостаточность внешнего дыхания развивается в течение суток, недели и может быть рассмотрена на примере гидроторакса, накопления различной природы жидкости в плевральной полости (недели).

Хроническая недостаточность внешнего дыхания развивается месяцы и годы, например при хронической обструктивной эмфиземе легких, диссеминированных легочных фиброзах. Следует отметить, что патологические изменения при хронической недостаточности внешнего дыхания, как правило, необратимы. Однако практически всегда под влиянием лечения происходит существенное улучшение функ­циональных параметров. При острой и подострой недостаточности внешнего дыхания возможно полное восстановление нарушенных функций.

Виды недостаточности внешнего дыхания определяются по основным функциональным звеньям аппарата внешнего дыхания, где выявляются патологические изменения:

1) нарушения вентиляции легких;




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 297; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.