КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка риска
Рассмотрим еще одну числовую характеристику случайной величины – дисперсию. Дисперсия равна D(X). Она вычисляется следующим образом: (3)
(4)
Основные свойства дисперсии: - D(X)≥0 - D(X)=0 для X=const
Недостатком дисперсии является то, что меняются единицы измерения (рубли меняются на рубли в квадрате, метры на квадратные метры и т. д.)
Поэтому чаще используют среднее квадратичное отклонение σ(X), равное: (5) Как в теории, так и на практике среднее квадратичное отклонение σ(X) чаще всего применяется как мера риска при оценке альтернатив.
Чтобы определить, как зависит уровень риска от величины дисперсии, рассмотрим неравенство Чебышева. Для любого X с математическим ожиданием mx=M(X) и дисперсией Dx=D(X) и для любого λ больше нуля справедливо: (6)
B mx A mx–λ mx+λ
Неравенству (6) равноценно следующее неравенство: (7)
Очевидно, что при заданном λ (сумма значимая для ЛПР), ЛПР заинтересован в том, чтобы
Это гарантия того, что полученный доход отклонится от ожидаемого дохода не больше, чем на λ=const. Чем больше гарантии, тем риск меньше и наоборот, чем меньше гарантии, тем риск больше. Согласно неравенству (7) данная вероятность убывает при увеличении Dx. Следовательно, чем больше дисперсия случайной величины X, тем труднее гарантировать, что X отклонится от M(X) не больше, чем на величину λ. То есть чем больше дисперсия, тем выше риск.
Рассмотрим теперь влияние величины σx на степень риска. Пусть λ=2*σx, тогда
(8)
Пусть λ=3*σx, тогда
(9)
Смысл формул (8) и (9) представим графически:
P≥0.75 mx–2*σx mx+2*σx
То есть, с гарантией 75% X не отклонится от М(X) больше, чем на 2* σx
P≥8/9 mx–3*σx mx+3*σx
То есть, с гарантией 89% X не отклонится от М(X) больше, чем на 3* σx
Можно сделать вывод, что чем меньше σx , тем ближе гарантированные значения X к M(X). Следовательно, чем меньше σx , тем риск меньше.
Найдем для нашего примера дисперсию: D(X1)=240000 D(X2)=52500 D(X3)=0 (D(const)=0)
Найдем σx σ (X1)=489,9 σ (X2)=229,129 σ (X3)=0 С точки зрения рисков самая хорошая альтернатива А3, далее следунт альтернатива А2 и самая плохая – альтернатива А1 (самая рисковая альтернатива). Для анализа берется σx , так как он измеряется в тех же единицах.
Выводы: если для каждой альтернативы могут быть найдены числовые характеристики случайной величины, отражающей целевую функцию ЛПР, то при принятии решения ЛПР может руководствоваться двумя критериями: средний ожидаемый доход (целевая функция), равный математическому ожиданию M(X), или среднее квадратичное отклонение – σx – случайной величины X.
Из примера становится очевидным, что во многих случаях критерий ожидаемого дохода и критерий риска противоречат друг другу. Альтернативы, благоприятные с точки зрения ожидаемого дохода часто связаны с высоким риском. Противоречие между средним ожидаемым доходом и стремлением уменьшить риск не снимается полностью, но существуют приемы отбрасывания коэффициентов риска.
Дата добавления: 2015-06-27; Просмотров: 306; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |