КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекція 6.Згинання прямолінійних стержнів
Згинанням називається тип деформування стержня, при якому в його поперечних перерізах виникають згинальні моменти. Класифікація згинання. Згинання підрозділяється на поперечне – зовнішнє навантаження діє в напрямку, перпендикулярному осі стержня, подовжнє - зовнішні сили діють уздовж осі стержня та подовжньо -поперечне. Поперечне згинання підрозділяється на плоске, при якому згинальні сили лежать в одній площині, та просторове, при якому зовнішні згинальні сили довільно орієнтовані у просторі. Плоске згинання підрозділяється на пряме та косе. У випадку прямого згинання площина дії згинальних навантажень збігається з однією з головних осей інерції перерізу. На рис 6.1 показаний випадок навантаження стержня при прямому поперечному згинанні. Зовнішні сили розташовані у площині УОZ, що збігається з головною віссю перерізу Y. При косому згинанні площина дії згинальних навантажень не збігається з жодною з головних осей інерції.
Рис.6.1. З прямого поперечного згинання ( Розглянемо згинання балок. Балкою називається стержень, закріплений на опорах та працюючий на згинання. Кількість зовнішніх зв'язків в опорах забороняє переміщення балки як твердого цілого. Плоскі опори балок та реактивні зусилля в них показані на рис.6.2.
Рис.6.2. У шарнірно-рухомій опорі (рис.6.2а) виникає одна реактивна сила R, що діє перпендикулярно поверхні опори (у напрямку показаного зв'язку). У шарнірно-нерухомій опорі (рис.6.2б) виникають дві складових реакції: вертикальна R і горизонтальна H. У затисненні (жорсткому затисненні) (рис.6.2в), виникають три складових: вертикальна R, горизонтальна H і момент M. Для кінематичної незмінюваності плоских балок необхідна кількість зовнішніх зв'язків три, причому при плоскому згинанні горизонтальна складова H реакції в шарнірно-нерухомій опорі тотожно дорівнює нулю. Тому надалі використовуємо два рівняння рівноваги. Якщо кількість зовнішніх поперечних зв'язків більше двох, то така балка називається статично невизначеною (багатоопорною). Типи і найменування балок, що зустрічаються, показані на рис.6.3.
Рис. 6.3. Поперечна сила Розглянемо консольний стержень з затисненим правим торцем та навантажений силами F1 і F2 (рис 6.4). Нехай F1> F2.
Рис.6.4. Скористаємося методом перерізів. Виберемо переріз на першій і другій ділянках, покажемо відсічені частини, замінимо дію відкинутих частин на залишену внутрішніми силовими факторами 1 ділянка: SFi = - F1 + SMi = F1×z1 – 2 ділянка, SFi = - F1 + F2 + SMi = F1×z2 - F2×(z2-а) - Використовуючи такі уявлення, сформулюємо наступні правила для визначення поперечної сили та згинального моменту при згинанні. Поперечна сила в даному перерізі – Згинальний момент в даному перерізі – Схематично прийняті правила знаків виглядають так:
Рис. 6.5. Диференціальні залежності між інтенсивністю зовнішнього розподіленого навантаження q поперечною силою
Рис. 6.6. Так як балка під дією зовнішнього навантаження знаходиться в рівновазі, то і кожен її елемент під дією зовнішніх та внутрішніх зусиль також знаходиться в рівновазі (рис. 6.6б). Запишемо умови статичної рівноваги: 1.
2.
3. Підставляючи вираз (6.2) у залежність (6.1), одержимо:
Диференціальні залежності (6.2) і (6.3) дозволяють установити деякі особливості розподілів поперечних сил та згинальних моментів. Приведені нижче правила можуть використовуватися для побудови та перевірки епюр 1. На ділянках, де розподілене навантаження відсутнє (q=0), епюра 2. На ділянках з рівномірно розподіленим навантаженням 3. На ділянках, де 4. Наступні пункти сформульовані для правої осі z (для правої системи координат). На ділянці, де поперечна сила 5. У перерізах, де до балки прикладені зовнішні зосереджені сили: а) на епюрі б) на епюрі 6. У перерізах, де до балки прикладені зосереджені моменти, на епюрі 7. Епюра Далі розглянемо приклади побудови епюр поперечних сил
Дата добавления: 2015-06-28; Просмотров: 1094; Нарушение авторских прав?; Мы поможем в написании вашей работы! |