КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Логарифмическая производная
Лекция 3. Логарифмическая производная. Производная неявной функции. Производные высших порядков.
При нахождении производных от показательно-степенных функций вида , а также других громоздких функций, допускающих логарифмирование, удобно применить логарифмическую производную. Определение: Логарифмической производной от функции y = f(х) называется производная от логарифма этой функции: . Выведем формулу для вычисления производной показательно-степенной функции или . Прологарифмируем обе части равенства, и воспользуемся свойством логарифма . Получаем: , , . Продифференцируем обе части равенства и используем правило дифференцирования произведения двух функций: , , , или окончательно получаем формулу , которую можно использовать для вычисления производной показательно-степенной функции вида . Пример 1. Вычислить производные данных функций: 1) , 2) . Решение: 1) , пусть и . Тогда и . Подставим эти выражения в полученную формулу . Получаем . 2) , пусть и , тогда и . Получаем =.
Дата добавления: 2014-01-03; Просмотров: 1050; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |