Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение взаимного положения прямой линии и плоскости




ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМОЙ ЛИНИИ ИПЛОСКОСТИ

Прямая линия и плоскость в пространстве относительно друг дру­га могут занимать следующие положения:

· прямая линия параллельна плоскости (частный случай — прямая лежит в плоскости);

· прямая линия пересекается с плоскостью (частный случай —прямая перпендикулярна к плоскости).

Иногда на чертеже нельзя непосредственно установить положение прямой линии т и плоскости (рис. 7.1).

В этом случае прибегают к некоторым вспомогательным построе­ниям. В результате данных построений от вопроса о взаимном поло­жении прямой линии и плоскости переходят к вопросу о взаимном положении двух прямых линий. В задачах этого типа используют ме­тод вспомогательной плоскости. Заключается он в следующем:

- через данную прямую т проводят вспомогательную плоскость . Подбор вспомогательной плоскости производится таким образом, чтобы решение задачи было наиболее простым;

 

· строят линию я пересечения плоскостей - заданной и вспомогательной А;

· устанавливают взаимное положение прямой т и линии пересечения плоскостей п.

При этом возможны следующие случаи:

· прямая т параллельна прямой я, следовательно, прямая т параллельна плоскости ;

· прямая т пересекает прямую я, следовательно, прямая т пере­секает плоскость .




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 53; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.