Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приближенные развертки




Развертки поверхностей вращения

Пересечение поверхностей вращения плоскостью

ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ ПЛОСКОСТЬЮ. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ

ПОВЕРХНОСТИ ВРАЩЕНИЯ.

Поверхность вращения общего вида образуется вращательным пе­ремещением образующей линии вокруг неподвижной оси.

Каждая точка образующей линии при вращении вокруг непод­вижной оси описывает окружность с центром на оси вращения. Эти окружности называются параллелями.

Наибольшую из параллелей (окружностей) поверхности вращения называют экватором поверхности, а наименьшую - горлом (шейкой) поверхности.

Плоскости, проходящие через ось поверхности вращения, назы­вают меридиональными, а линии, по которым они пересекают по­верхность, - меридианами. Меридиональная плоскость, параллельная плоскости проекции, называется плоскостью главного меридиана.

Линия пересечения плоскости главного меридиана с поверхно­стью вращения называется главным меридианом.

При пересечении поверхности вращения плоскостью получается плоская фигура сечения. Построение проекций линии сечения необ­ходимо начинать с определения опорных точек. К ним относятся точ­ки, расположенные на очерковых образующих поверхности (точки, определяющие границы видимости проекций кривой), и точки, уда­ленные на экстремальные (максимальное и минимальное) расстояния от плоскостей проекций. После этого определяют произвольные (промежуточные) точки линии сечения.

Для определения точек, принадлежащих фигуре сечения, можно использовать различные методы. Один из них - метод вспомогатель­ных секущих плоскостей. Суть его заключается в том, что заданные плоскость и поверхность вращения пересекают вспомогательной плоскостью. Находят линии пересечения этой плоскости с заданными плоскостью и поверхностью вращения. Затем отмечают точки, в которых пересекаются полученные линии пересечения. Построенные точ­ки фигуры сечения соединяют плавной линией.

Построение разверток поверхностей вращения имеет большое значение, особенно при конструировании из листового материала мо­делей различных сооружений, форм для металлических отливок, со­судов, трубопроводов, резервуаров и т.п.

Поверхности, которые можно совместить с плоскостью без разры­вов и складок, называют развертывающимися поверхностями. Фигу­ру, полученную при совмещении развертывающейся поверхности с плоскостью, называют разверткой.

Для развертывающихся поверхностей можно построить приближенную развертку.

При построении приближенной развертки поверхность аппрокси­мируют поверхностями вписанных или описанных многогранников, имеющих грани в форме прямоугольников или треугольников. По­этому при графическом выполнении разверток поверхности всегда приходится производить разгибание или спрямление кривых линий, принадлежащих поверхности, что неизбежно приводит к потере точ­ности.




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 73; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.