Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение f(A) в общем случае





Пусть m(x) – минимальный многочлен А и он имеет такое каноническое разложение , , – собственные значения А. Пусть многочлены g(x) и h(x) принимают одинаковые значения.

Пусть g(A)=h(A) (1), тогда многочлен d(x)=g(x)-h(x) – аннулирующий многочлен для А, так как d(A)=0, следовательно, d(x) делится на линейный многочлен, т.е. d(x)=m(x)*q(x) (2).

Тогда , т.е. (3), , , .

Условимся m чисел для f(x) таких называть значениями функции f(x) на спектре матрицы А, а множество этих значений будем обозначать .

Если множество f(Sp A) определено для f(x), то функция определена на спектре матрицы А.

Из (3) следует, что многочлены h(x) и g(x) имеют одинаковые значения на спектре матрицы А.

Наши рассуждения обратимы, т.е. из (3) Þ (3) Þ (1). Таким образом, если задана матрица А, то значение многочлена f(x) вполне определяется значениями этого многочлена на спектре матрицы А, т.е. все многочлены gi(x), принимающие одинаковые значения на спектре матрицы имеют одинаковые матричные значения gi(A). Потребуем, чтобы определение значения f(A) в общем случае подчинялось такому же принципу.

Значения функции f(x) на спектре матрицы А должны полносильно определить f(A), т.е. функции, имеющие одни и те же значения на спектре должны иметь одно и то же матричное значение f(A). Очевидно, что для определения f(A) в общем случае, достаточно найти многочлен g(x), который бы принимал те же значения на спектре А, что и функция f(A)=g(A).

Df. Если f(x) определена на спектре матрицы А, то f(A)=g(A), где g(A) – многочлен, принимающий на спектре те же значения, что и f(A),

Df. Значением функции от матрицы А назовем значение многочлена от этой матрицы при .

Среди многочленов из С[x], принимающих одинаковые значения на спектре матрицы А, что и f(x), степени не выше (m-1), принимающий одинаковые значения на спектре А, что и f(x) – это остаток от деления любого многочлена g(x), имеющего те же значения на спектре матрицы А, что и f(x), на минимальный многочлен m(x)=g(x)=m(x)*g(x)+r(x).

Этот многочлен r(x) называют интерполяционным многочленом Лагранжа-Сильвестра для функции f(x) на спектре матрицы А.

 

Замечание. Если минимальный многочлен m(x) матрицы А не имеет кратных корней, т.е. , то значение функции на спектре .

 

Пример:

Найти r(x) для произвольной f(x), если матрица

. Построим f(H1). Найдем минимальный многочлен H1 – последний инвариантный множитель [xE-H1]:

, dn-1=x2; dn-1=1;

mx=fn(x)=dn(x)/dn-1(x)=xnÞ 0 – n –кратный корень m(x), т.е. n-кратные собственные значения H1.

, r(0)=f(0), r’(0)=f’(0),…,r(n-1)(0)=f(n-1)(0) Þ .





Дата добавления: 2014-01-04; Просмотров: 221; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. PS : ДЛЯ П-21 ОПРЕДЕЛЕНИЕ МЕНЕДЖЕРА.
  2. А. Определение глубины заложения фундамента
  3. Аксиоматическое определение вероятности.
  4. Акции и определение их доходности.
  5. Б Определение числа свай в фундаменте и размещение их в плане
  6. Банковский менеджмент: сущность, определение
  7. Биосфера. Определение понятия. Границы биосферы. Эволюция биосферы.
  8. В общем виде второй закон термодинамики записывается
  9. В общем случае добытое минеральное сырье является собственностью пользователя недр, осуществляющего добычу на лицензионном участке.
  10. В общем смысле под этикой управления понимается свод моральных принципов и ценностей, направляющих поведение индивида или группы индивидов.
  11. Вирусный гепатит В, Дельта. Этиология, клиника, прогноз, лечение. Определение ко- и суперинфекции.
  12. Вопрос 1. Определение потребности в сырье и материалах, комплектующих изделиях, полуфабрикатах

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.