Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Экспериментальное наблюдение Бозе-Эйнштейновской конденсации




Шведская Королевская академия наук присудила Нобелевскую премию 2001 г. по физике работающим в США ученым Э.Корнеллу, В.Кеттерле и К.Вайману “за экспериментальное обнаружение конденсации Бозе-Эйнштейна в разреженных газах щелочных металлов и фундаментальные исследования свойств конденсата”.

С тех пор как Альберт Эйнштейн в предсказал новое интересное явление, история его изучения была очень непростой. В 1924 г. Эйнштейн сделал первый весьма неординарный шаг: перенес статистику, предложенную индийским физиком Шатьендранатом Бозе для фотонов, на материальные частицы. В следующем году, анализируя поведение системы таких частиц, Эйнштейн обнаружил, что в ней возможно явление, которое сейчас получило название конденсации Бозе-Эйнштейна.

Утверждение Эйнштейна нетривиально по двум причинам. Во-первых, рассматривается газ невзаимодействующих частиц. Во-вторых, речь идет о конечной температуре, и в этом случае естественно думать, что все частицы “размазаны” по разным энергетическим состояниям. Не случайно после опубликования данной работы очень крупные физики-теоретики высказывали сомнения в ее достоверности. Достаточно вспомнить Дж.Уленбека, который считал этот результат артефактом, или П.Эренфеста, близкого друга Эйнштейна, который писал в своем письме последнему, что предсказанное им явление неявно предполагает наличие взаимодействия между частицами. В ответном письме Эйнштейн признавал, что это, по-видимому, так, и он затрудняется это интерпретировать, но не сомневается: конденсация - прямой результат статистических свойств газа независимых частиц.

Чтобы понять, почему возникали такие сомнения, надо упомянуть ряд обстоятельств. К тому моменту еще не существовало двух статистик, которые мы теперь знаем под именами Бозе-Эйнштейна и Ферми-Дирака, т.е. не было раздельного описания для частиц с целочисленным спином (первая статистика) и полуцелым спином (вторая). Не было и осознания решающего факта, что в квантовой механике волновая функция, соответствующая двум или более идентичным частицам, при перестановке их местами не должна меняться (статистика Бозе-Эйнштейна) или, наоборот, должна менять знак (статистика Ферми-Дирака). Именно эта обязательная симметризация - исключительно нетривиальное обстоятельство - фактически вводит некое виртуальное взаимодействие между частицами в случае, когда непосредственного, силового взаимодействия между ними нет. Бозе-эйнштейновская конденсация часто называется просто бозе-конденсацией, хотя в работе Бозе о конденсации нет ни единого слова (он рассматривал газ равновесных фотонов, где это явление отсутствует).

Однако прямого экспериментального наблюдения непосредственно самой конденсации до 1995 г. не было. Это обстоятельство не случайно: чтобы ее наблюдать, необходимо иметь газ при фантастически низких температурах. В первых экспериментах температура была в 10 млрд раз ниже комнатной, а ведь даже при температуре около 1 К любые вещества становятся твердыми (единственное исключение - гелий, остающийся жидким). Рассчитывать, что при такой температуре может существовать газ, просто невероятно. Поэтому речь могла идти только о метастабильном состоянии, т.е. о том, чтобы искусственно приготовить газ, который “жил” бы достаточное для эксперимента время. Но тут же возникает и вторая проблема: этот газ не должен взаимодействовать со стенками сосуда, который его удерживает, поскольку при таких температурах любое взаимодействие со стенками разрушит метастабильное состояние.

Итак, необходимо иметь, с одной стороны, рекордно низкие температуры, а с другой - систему, в которой газ не имеет контакта со стенками. Последнее препятствие было преодолено таким образом: роль сосуда играло магнитное поле определенной конфигурации. В так называемой магнитной ловушке частицы с магнитным моментом при достаточно низкой температуре испытывают фактически только отражение от магнитной “стенки”, т.е. никакого реального физического контакта нет, и газ существует в системе с абсолютно отражающими стенками. Получить же столь низкие температуры (это была фундаментальная проблема) удается лишь в два этапа. На первом используется метод лазерного охлаждения. Если поток фотонов падает на взаимодействующие с ним атомы и рассеивается, то импульс фотонов передается последним. При этом частицы, двигающиеся навстречу фотонам, получают импульс в противоположном направлении, т.е. происходит их замедление. Заставить взаимодействовать с фотонами нужную группу атомов можно, подбирая соответствующим образом частоту лазера - так, чтобы она резонансно совпала с частотой поглощения фотона атомом, зависящей из-за эффекта Доплера от его движения. Работы по лазерному охлаждению получили Нобелевскую премию в 1997 году (С.Чу, К.Коэн-Таннуджи, У.Д.Филлипс), и столь высокая оценка, была обусловлена именно тем, что оно было использовано при охлаждении газов для достижения бозе-конденсации. Таким образом, удается эффективно охладить до 10–4-10–5К довольно большое число атомов, однако эти температуры все еще недостаточны для поставленной цели.

Чтобы до конца охладить систему, нужен второй этап, и им стало так называемое испарительное охлаждение. Если внутри какого-нибудь сосуда с барьерами находятся атомы, то наиболее горячие атомы или, как говорят, максвелловские хвосты распределения преодолевают барьер, а те, которые имеют более низкую энергию, через барьер выйти не могут. Поэтому со временем, за счет “обрезания” этих “хвостов”, происходит понижение температуры в системе. Если уменьшить высоту барьера, через него уйдут и другие частицы, обладающие уже меньшей энергией. Так, постепенно понижая барьер, можно достичь исключительно низких температур, сохраняя при этом достаточно большое количество частиц в системе.

Этот метод был развит еще до исследований лауреатов, но они усовершенствовали его, используя для “обрезания хвостов” парамагнитный резонанс. Поскольку в данном случае частицы удерживаются в магнитной ловушке, можно, подавая переменное поле, “приоткрывать” ловушку тем из них, для которых выполнено условие парамагнитного резонанса, вызывая их ускоренный уход. Снижая по мере отсева горячих атомов частоту электромагнитного поля, можно постепенно “срезать” слои теплых частиц. Сочетание лазерного охлаждения и ускоренного испарения позволило достичь температуры в 10–8К, и к 1995 г. в двух лабораториях был получен газ, который, с одной стороны, имел такую низкую температуру, а с другой - достаточно большое количество частиц. В лаборатории JILA, объединенного исследовательского центра Национального института стандартов и Колорадского университета, охлаждение было выполнено для 2000 атомов рубидия, а в Массачусетсском технологическом институте - для еще большего числа (порядка 105) атомов натрия.

Почему были выбраны именно натрий и рубидий? По двум причинам. Во-первых, они представляют собой простейшую систему: щелочные металлы, как и атомарный водород, имеют один электрон на внешней оболочке и, следовательно, имеют спин и магнитный момент (все удержание происходит в магнитных ловушках, которые “держат” незаряженные частицы за счет взаимодействия атома, обладающего магнитным моментом, с магнитным полем). Необходимое качество присутствует у всех трех упомянутых элементов. Во-вторых, щелочные элементы имеют подходящие частоты переходов, соответствующие сравнительно стандартным лазерам.

 

2.6. Черное излучение

Важнейшим примером применения статистики Бозе является электромагнитное излучение, находящееся в тепловом равновесии – так называемое черное излучение.

Черное излучение можно рассматривать как газ, состоящий из фотонов. Линейность уравнений электродинамики отражает тот факт, что фотоны не взаимодействуют друг с другом (принцип суперпозиции), так что фотонный газ можно считать идеальным. Фотоны имеют спин равный единице, и подчиняются статистике Бозе.

Если измерение находится не в вакууме, а в материальной среде, то условие идеальности фотонного газа требует малости взаимодействия излучения с веществом. Это условие выполнимо в газах (за исключением частот близких к линиям поглощения). При большой плотности – только при очень больших температурах.

Следует иметь в виду, что наличие хотя бы небольшого количества вещества вообще необходимо для самой возможности установления теплового равновесия в излучении, так как фотоны практически не взаимодействуют между собой.

Число частиц N в фотонном газе – переменная величина, т.к. они поглощаются и излучаются атомами. Поэтому N должна сама определяться из условия равновесия. Потребовав минимальности свободной энергии газа (при заданных T,V) получим в качестве одного из необходимых условий ∂F/∂N = 0. Но поскольку (∂F/∂N) T,V = μ, отсюда следует, что μ = 0 для газа фотонов.

Распределение фотонов по различным газовым состояниям с определенными значениями импульса (и определенной поляризации) дается, следовательно, формулой (с μ = 0)

(*).

Это так называемое распределение Планка. Считая объем достаточно большим, перейдем от дискретного к непрерывному распределению собственных частот излучения.

Число колебаний с компонентами волнового вектора в интервалах d3k = dkxdkydkz равно Vd3k/(2π)3, а число колебаний с абсолютной величиной волнового вектора в интервале dk есть, соответственно 4πk3dk V/(2π)3.

Вводя частоту ω=сk и умножая на 2 (два независимых направления поляризации колебаний), получим число квантовых состояний фотонов с частотами в интервале {ω, ω+d ω}

V ω2d ω/(π2c3).

Умножив распределение (*) на эту величину, найдем число фотонов в данном интервале частот

,

а умножив ещё на hω, получим энергию излучения, заключенную в этом участке спектра:

. (**)

Эта формула для спектрального распределения черного излучения называется формулой Планка. При hω << kT она переходит в формулу Рэлея –Джинса

.

Это формула не содержит постоянной Планка h. Ее смысл достаточно прост: в классической механике на каждую колебательную степень свободы должна приходиться энергия kT (закон равнораспределения).

В другом предельном случае hω >> kT

 

- формула Вина.

При этом имеет место закон смещения Вина – максимум распределения при повышении температуры смещается в сторону больших частот, пропорциональных T.

Вычислим термодинамические величины черного излучения. При μ = 0 свободная энергия F совпадает с Ω (F = Ф – PV = μN +Ω)

Согласно формуле

,

где полагаем μ = 0 и переходим обычным образом от суммирования к интегрированию, получим:

.

Вводя безразмерную переменную интегрирования, и интегрируя по частям, получим:

.

Стоящий здесь интеграл равен π4/15. Таким образом:

,

где - постоянная Стефана-Больцмана

Энтропия черного излучения равна

.

Полная энергия излучения

.

Это выражение можно получить и интегрированием (**). Оно представляет собой обоснование закона Больцмана – полная энергия излучения ~T4.

Найдем теплоемкость излучения

.

Давление черного излучения:

.

Видим, что давление не зависит от V (при изотермическом сжатии давление не меняется), что является следствием переменности числа частиц. Из этого выражения можно получить

.

Полное число фотонов в черном излучении

.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 305; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.