Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Параметрические уравнения плоскости




Параметрические уравнения плоскости, проходящей через точку компланарно двум неколлинеарным между собой векторам:

, , в общей декартовой системе координат имеют вид:

Доказательство. Произвольная точка пространства лежит на данной плоскости тогда и только тогда, когда векторы

,

и компланарны, иначе, когда они линейно зависимы. Но так как векторы и неколлинеарны, то вектор является линейной комбинацией векторов и

.

Переходя к координатам, получим:

откуда и следует искомое соотношение.

Замечание 1. Параметры и имеют следующее геометрическое значение: это общие декартовы координаты точки М данной плоскости в системе координат: где - начало координат, и - масштабные векторы соответственно первой и второй осей координат (см.рис).

Замечание 2. Если ; - радиусы-векторы точек и М, то соотношение можно переписать так

; или .

Это уравнение называется векторным параметрическим уравнением плоскости, проходящей через точку компланарно двум неколлинеарным между собой векторам и .

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 386; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.