КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятие суммы и произведения событий
Перед тем как формулировать и доказывать основные теоремы, введем некоторые вспомогательные понятия, а именно понятия о сумме событий и произведении событий. Во многих областях точных и экономических наук применяются символические операции над различными объектами, которые получают свои названия по аналогии с арифметическими действиями, рядом свойств которых они обладают. Таковы, например,операции сложения и умножения векторов в механике, операции сложения и умножения матриц в алгебре и т. д. Эти операции, подчиненные известным правилам, позволяют не только упростить форму записей, но в ряде случаев существенно облегчают логическое построение научных выводов. Введение таких символических операций над событиями оказывается плодотворным и в теории вероятностей. Суммой двух событий А и В называется событие С, состоящее в выполнении события А или события В, или обоих вместе. Например, если событие А — попадание в цель при первом выстреле, событие В — попадание в цель при втором выстреле, то событие С=А+В есть попадание в цель вообще, безразлично при каком выстреле — при первом, при втором или при обоих вместе. Если события А и В несовместны, то естественно, что появление обоих этих событий вместе отпадает, и сумма событий А и В сводится к появлению или события А, или события В. Например, если событие А — появление карты червонной масти при вынимании карты из колоды, событие В— появление карты бубновой масти, то С=А+В есть появление карты красной масти, безразлично—червонной или бубновой. Короче, суммой двух событий А и В называется событие С, состоящее в появлении хотя бы одного из событий А и В. Суммой нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий. Например, если опыт состоит в пяти выстрелах по мишени и даны события; есть событие «не более двух попаданий», а есть событие «не менее трех попаданий». На Рис.1.1. наглядно иллюстрированы понятия суммы двух (Рис.1.1 а) и трёх (Рис.1.1 б) событий. Так, если событие А есть попадание точки в область А, соответственно событие В - попадание в область В, то событие А+В есть попадание во все заштрихованные области на Рис.1.1.а. Аналогично на Рис.1.1. б показана сумма для трёх событий.
Как видно из представленных рисунков, операция суммы событийаналогична такой логической операции Булевой алгебры, каклогическая операция «ИЛИ» (операция дизъюнкции). Произведением, двух событий А и В называется событие С, состоящее в совместном выполнении события А и события В. Например, если событие А — появление туза при вынимании карты из колоды, событие В — появление карты бубновой масти, то событие С=АВ есть появление бубнового туза. Если производится два выстрела по мишени и событие А — попадание при первом выстреле, событие В — попадание при втором выстреле, то С = АВ есть попадание при обоих выстрелах. Произведением нескольких событий, называется событие, состоящее в совместном появлении всех этих событий. Например, если по мишени производится три выстрела и рассматриваются события B1 — промах при первом выстреле, В2 — промах при втором выстреле, В3 — промах при третьем выстреле, то событие состоит в том, что в мишени не будет ни одного попадания. На Рис.1.2. наглядно иллюстрированы понятия произведения двух (Рис.1.2 а) и трёх (Рис.1.2 б) событий. Так, если событие А есть попадание точки в область А, соответственно событие В - попадание в область В, то событие АВ есть попадание в область пересечения обоих областей (области А и области В) на Рис.1.1.а. Аналогично на Рис.1.1. б показана произведение для трёх событий.
Как видно из представленных рисунков, операция произведения событийаналогична такой логической операции Булевой алгебры, каклогическая операция «И» (операция конъюнкции). При определении вероятностей часто приходится представлять сложные события в виде комбинаций более простых событий, применяя и операцию сложения, и операцию умножения событий. Например, пусть по мишени производится три выстрела и рассматриваются следующие элементарные события: Рассмотрим более сложное событие В, состоящее в том, что в результате данных трех выстрелов будет ровно одно попадание в мишень. Событие В можно представить в виде следующей комбинации элементарных событий: Событие С, состоящее в том, что в мишени будет не менее двух попаданий, может быть представлено в виде: Такие приемы представления сложных событий часто применяются в теории вероятностей. Непосредственно из определения суммы и произведения событий следуют 2 важных следствия:
1) А+А+…+А=А 2) ААА….А=А
Следует заметить, что если событие В есть частный случай события А, то справедливы следующие два, также важных для практики, выражения, иллюстрация которых приведена также на Рис.1.3: 1) А+В=А; 2) АВ= В.
Дата добавления: 2014-01-07; Просмотров: 2487; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |