КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Независимых событий
Теоремы умножения для зависимых и Рассмотрим два события: А и В; пусть вероятности Р(А) и РА(В) известны. Как найти вероятность совмещения этих событий, т. е. вероятность того, что появится и событие А и событие В? Ответ на этот вопрос дает теорема умножения. Теорема. Вероятность совместного появления двух событии равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Доказательство. По определению условной вероятности. Отсюда Замечание. Применив формулу (*) к событию ВА, получим или, поскольку событие ВА не отличается от события АВ, Сравнивая формулы (*) и (**), заключаем о справедливости равенства Следствие. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились: Заметим, что порядок, в котором расположены события, может быть выбран любым, т.е. безразлично какое событие считать первым, вторым и т. д. Пример 1. У сборщика имеется 3 конусных и 7 эллиптических валиков.Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков—конусный, а второй— эллиптический. Решение. Вероятность того, что первый валик окажется конусным событие А), Вероятность того, что второй валик окажется эллиптическим (событие в), вычисленная в предположении, что первый валик—. конусный, т. е- условная вероятность По теореме умножения, искомая вероятность Пример 2. В урне 5 белых,.4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно.Найти вероятность того, что при первом испытании появится белый шар (событие А), при втором—черный (событие В) и при третьем—синий (событие С). Решение.Вероятность появления белого шара в первом испытании Вероятность появления черного шара во втором испытании, вычисленная в предположении, что в первом испытании появился белый шар, т. е. условная вероятность Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что в первом испытании появился белый шар, а во втором—черный, т. е. условная вероятность Искомая вероятность Независимые события. Теорема умножения для независимых событий Пусть вероятность события В не зависит от появления события А. Событие В называют независимым от события А, если появление события А не изменяет вероятности события В, т. е. если условная вероятность события В равна его безусловной вероятности: Подставив (*) в соотношение (***) предыдущего подвопроса лекции, получим Отсюда т. е. условная вероятность события А в предположении, что наступило событие В, равна его безусловной вероятности. Другими словами, событие А не зависит от события В. Итак, если событие В не зависит от события А, то и событие А не зависит от события В; это означает, что свойство независимости событий взаимно. Для независимых событий теорема умножения т. е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий. Равенство (**) принимают в качестве определения независимых событий. Два события называют независимыми, если вероятность их совмещения равна произведению вероятностей этих событий; в противном случае события называют зависимыми. На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы. Пример 1. Найти вероятность совместного поражения цели двумя орудиями, если вероятность поражения цели первым орудием (событие А) равна 0,8, а вторым (событие В)—0,7. Решение. События А и В независимые, поэтому, по теореме умножения, искомая вероятность
Следовательно, Отсюда т. е. события А и В независимы. Несколько событий называют попарно независимыми» если каждые два из них независимы. Например, события А, В, С попарно независимы, если независимы события А и В, А и С, В и С. Для того чтобы обобщить теорему умножения на несколько событий, введем понятие независимости событий в совокупности. Несколько событий называют независимыми в совокупности (или просто независимыми), если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных. Например, если со- события независимы в совокупности, то условная вероятность появления любого события из них, вычисленная в предположении, что наступили какие-либо другие события из числа остальных, равна, его безусловной вероятности. Подчеркнем, что если несколько событий независимы попарно, то отсюда еще не следует их независимость в совокупности. В этом смысле требование независимости событий в совокупности сильнее требования их попарной независимости. Поясним сказанное на примере. Пусть в урне имеется 4 шара, окрашенные: один—в красный цвет (А), один— в синий цвет (В), один—в черный цвет (С) и один—во все эти три цвета (АВС). Чему равна вероятность того, что извлеченный из урны шар имеет красный цвет? Так как из четырех шаров два имеют красный цвет, то Р (А) == 2/4 =1/2. Рассуждая аналогично, найдем Р(В)==1/2, Р (С) = 1/2. Допустим теперь, что взятый шар имеет синий цвет, т. е. событие В уже произошло. Изменится ли вероятность того, что извлеченный шар имеет красный цвет, т. е. изменится ли вероятность события А? Из двух шаров, имеющих синий цвет, один шар имеет и красный цвет, поэтому вероятность события А по-прежнему равна 1/2. Другими словами, условная вероятность события А, вычисленная в предположении, что наступило событие В, равна его безусловной вероятности. Следовательно, события А и В независимы. Аналогично придем к выводу, что события А и С, В и С независимы. Итак, события А, В и С попарно независимы. Независимы ли эти события в совокупности? Оказывается, нет. Действительно, пусть извлеченный шар имеет два цвета, например синий и черный. Чему равна вероятность того, что этот шар имеет и красный цвет? Лишь один шар окрашен во все три цвета, поэтому взятый шар имеет и красный цвет. Таким образом, допустив, что события В и С произошли, приходим к выводу, что событие А обязательно наступит. Следовательно, это событие достоверное и вероятность его равна единице. Приведем теперь следствие из теоремы умножения. Следствие. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий: Доказательство. Рассмотрим три события: А, В и С. Совмещение событий А, В и С равносильно совмещению событий АВ и С. Поэтому Так как события А, В и С независимы в совокупности, то независимы, в частности, события АВ и С, а также А и В. По теореме умножения для двух независимых событий имеем: Итак. окончательно получим Для произвольного «п» доказательство проводится методом математической индукции. независимы в совокупности. ' Пример 2. Найти вероятность совместного появления герба при одном бросании двух монет. Решение. Вероятность появления герба первой монеты (событие А) -
Вероятность появления герба второй монеты (событие В) События А и В независимые, поэтому искомая вероятность по теореме умножения равна
Дата добавления: 2014-01-07; Просмотров: 596; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |