![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Правила дифференцирования. Имея некоторый набор дифференцируемых функций можно получить новые дифференцируемые функции с помощью арифметических и алгебраических действий над ними
Имея некоторый набор дифференцируемых функций можно получить новые дифференцируемые функции с помощью арифметических и алгебраических действий над ними. Получим теперь формулы для производных суммы, разности, произведения, частного двух функций и обратной функции. 7.1. Производная суммы. Пусть функции
Полученное равенство следует запомнить, как правило дифференцирования суммы двух функций: производная суммы двух функций равна сумме производных этих функций. Это правило справедливо и для произвольного конечного числа функций: если функции
7.2. Производная разности. Пусть функции
Полученное равенство следует запомнить, как правило дифференцирования разности двух функций: производная разности двух функций равна разности производных этих функций. 7.3. Производная произведения. Пусть функции
Полученное равенство следует запомнить, как правило дифференцирования произведения двух функций: производная произведения двух функций равна сумме произведений производной каждой из этих функций на другую функцию. Приведенное правило легко обобщается и для произвольного конечного числа множителей. Например, для трех и четырех множителей равенства, аналогичные (11) имеют вид:
Производная произведения произвольного количества функций равна сумме произведений производной каждой из этих функций на остальные функции. 7.4. Производная частного. Пусть функции
Полученное равенство следует запомнить, как правило дифференцирования частного двух функций: производная частного двух функций равна отношению произведения производной числителя на знаменатель минус произведение числителя на производную знаменателя к квадрату знаменателя. 7.5. Производная обратной функции. Пусть функция
Дата добавления: 2014-01-07; Просмотров: 494; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |