Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Признак перпендикулярности двух плоскостей. Перпендикулярность двух плоскостей




Перпендикулярность двух плоскостей

 

Чертеж 3.3.1.

Пусть прямая a является линией пересечения плоскостей α и β (чертеж 3.3.1). Пусть плоскость γ, перпендикулярная прямой a, пересекает плоскости α и β по прямым m и n, которые взаимно перпендикулярны, то есть γ α = m, γ β = n и m n. Такие плоскости α и β называются взаимно перпендикулярными.

Это определение не зависит от плоскости γ. Действительно, если провести другую плоскость δ, перпендикулярную прямой a, то δ || γ.

Пусть δ α = m', δ β = n'. По теореме о следах m' || m и n' || n. Угол, образованный прямыми m' и n', и угол, образованный прямыми m и n, равны как углы с соответственно параллельными и одинаково направленными сторонами.

Пусть a α, a β, тогда β α. То есть, если плоскость β содержит прямую a, перпендикулярную плоскости α, то плоскости α и βперпендикулярны.

Доказательство

 

Чертеж 3.3.2.

Пусть a α, a β и α β = b (чертеж 3.3.2), c – прямая, лежащая в плоскости α и проходящая через точку O пересечения прямой a с плоскостью α и с b. Через прямые a и c проведем плоскость γ. Имеем γ b, так как a b и c b. Поскольку a c, то по определениюβ α.

Пусть α β, α β = a, b a, b β, тогда b α. То есть прямая b, лежащая в одной из взаимно перпендикулярных плоскостей β и перпендикулярная линии пересечения a этих плоскостей, перпендикулярна и другой плоскости α.

Чертеж 3.3.3.

Доказательство

 

Пусть b a = A (чертеж 3.3.3), a = α β и β α. В плоскости α проведем прямую c через точку A перпендикулярно прямой a. Проведем плоскость γ через прямые b и c. Имеем γ a по признаку перпендикулярности прямой и плоскости. Поскольку α β, то b c, следовательно, b a и b c, откуда следует, что b α.



Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 652; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.