КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Элементы векторной алгебры и аналитической геометрии в пространстве
Пример Даны вершины треугольника . Найти: 1) уравнение стороны АВ; 2) уравнение медианы, проведенной из вершины С; 3) координату точки пересечения медиан; 4) уравнение высоты, опущенной из вершины В на сторону АС и ее длину; 5) уравнение прямой, проходящей через точку С параллельно прямой АВ; 6) площадь треугольника. Решение 1) Используем уравнение прямой, проходящей через две точки . Подставив координаты точек , получим - общее уравнение прямой АВ, из которого находим уравнение прямой с угловым коэффициентом , . 2) Медиана, проведенная из вершины С делит противолежащую сторону АВ треугольника пополам. Найдем координаты точки Е середины стороны (рис.1): , т.е. , . Подставим координаты точек в уравнение прямой, проходящей через две точки, получим - общее уравнение прямой СЕ. 3) Точка М делит каждую медиану в отношении , считая от вершины. Таким образом, ее координаты можно найти по формулам: . В нашем случае , откуда . 4) Найдем уравнение прямой, проходящей через заданную точку перпендикулярно прямой из уравнения . Найдем угловой коэффициент прямой АС, используя уравнение прямой, проходящей через две точки и : - уравнение АС. Угловой коэффициент прямой АС равен , тогда, используя условие перпендикулярности двух прямых , получим - уравнение высоты. Длину высоты можно найти, как расстояние от точки до прямой АС по формуле . В нашем случае уравнение прямой АС: , следовательно, . 5) Для нахождения уравнения прямой, проходящей через точку С параллельно прямой АВ используем уравнение прямой, проходящей через заданную точку в заданном направлении и условие параллельности двух прямых. Известно, что угловой коэффициент прямой АВ равен , следовательно, - - уравнение искомой прямой. 6) Площадь треугольника находится по формуле: , в нашем случае . у А (4;6)
Е
В (-4;0) М 0 1 х
С (-1;-4) Рис. 1
Векторные величины (векторы) – это такие величины, которые характеризуются не только своими числовыми значениями, но и направлением. Для изображения векторных величин служат геометрические векторы. Геометрический вектор – это направленный отрезок. Координатами вектора в прямоугольной системе координат называются проекции вектора на оси координат. Запись означает, что вектор имеет координаты . Модуль вектора (его длина) вычисляется по формуле . Чтобы найти координаты вектора, заданного координатами точек его начала и конца надо найти разности соответствующих координат его конца и начала, т.е. если задан вектор , где , то . Тогда модуль вектора находится по формуле . Скалярным произведением двух векторов называется число, равное произведению их модулей на косинус угла между ними. Обозначают: () или . По определению , где . Пусть векторы заданы аналитически: . Выражение скалярного произведения через координаты перемноженных векторов: . Косинус угла между двумя векторами можно найти по формуле . Векторным произведением вектора на вектор называется вектор, обозначаемый символом или , определяемый условиями: 1) модуль этого вектора равен произведению модулей перемножаемых векторов на синус угла между ними, т.е. ; 2) этот вектор перпендикулярен каждому из перемножаемых векторов, т.е. плоскости, определяемой этими векторами; 3) направлен по перпендикуляру к этой плоскости так, что векторы и составляют правую тройку (т.е. если при наблюдении с конца вектора кратчайший поворот от вектора к вектору происходит против часовой стрелки.)
Модуль векторного произведения численно равен площади параллелограмма, построенного на векторах сомножителях – в этом состоит геометрический смысл модуля векторного произведения: . Пусть даны два вектора и . Выражение векторного произведения через координаты перемножаемых векторов: .
Смешанным произведением трех векторов называется число, равное скалярному произведению вектора на вектор , т.е. . Если векторы заданы своими прямоугольными координатами , то их смешанное произведение вычисляется по формуле . Геометрический смысл смешанного произведения: объем параллелепипеда, построенного на 3-х некомпланарных векторах, равен абсолютной величине их смешанного произведения . Тогда объем треугольной пирамиды, построенной на этих же векторах, находится по формуле . Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Если , три данные точки, не лежащие на одной прямой, а произвольная точка плоскости, то уравнение плоскости, проходящей через три точки, имеет вид . Уравнение прямой, проходящей через две точки пространства имеет вид . Угол между прямой и плоскостью находится по формуле , где коэффициенты выбирают из канонических уравнений прямой и общего уравнения плоскости , где - вектор нормали к плоскости. Условие перпендикулярности прямой и плоскости: .
Дата добавления: 2014-11-16; Просмотров: 494; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |