Теорема. Если каждая из функций и дифференцируема в данной точке х, то сумма, разность, произведение и частное (частное при условии ) так же дифференцируемы в этой точке, причем имеют место формулы:
1) ,
2) ,
3) .
Следствие. Постоянный множитель можно выносить за знак производной:
.
Используя таблицу производных и правила дифференцирования, найти производную функции .
Решение
Пусть дана сложная функция где или .
Теорема. Если функция дифференцируема в точке , а функция дифференцируема в точке , тогда сложная функция дифференцируема в точке , причем
или
Замечание. Теорема может быть обобщена на случай любой конечной цепочки функций. Так, если , или и существуют производные , то .
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление