КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теорема о движении центра масс механической системы
3.1 Дифференциальные уравнения движения механической системы Рассмотрим механическую систему, состоящую из n материальных точек. Выделим какую-нибудь точку системы с массой mк. Обозначим равнодействующую всех приложенных к точке внешних сил (и активных реакций связей) через
Уравнение (3.1) представляет собой дифференциальное уравнение движения к й точки. Проецируя векторы обеих частей равенства (3.1) на оси х, у, z; получим дифференциальные уравнения движения системы в проекциях на эти оси:
Рисунок 3.1
Для механической системы, имеющей n точек, получим 3n совместных дифференциальных уравнений движения. Так как внутренние силы, приложенные к точкам системы, в большинстве случаев остаются неизвестными, а число точек системы обычно велико, то эти 3n уравнений могут быть проинтегрированы лишь в исключительных случаях, поэтому используют другой способ для решения задач на движение системы тел.
3.2 Теорема о движении центра масс механической системы В ряде случаев для определения характера движения системы (обычно твердого тела) требуется знать закон движения ее центра масс. Чтобы найти этот закон, составим уравнения движения для всех точек системы в виде (3.1) и сложим почленно их левые и правые части. Тогда получим:
преобразуем левую часть этого равенства. Из формулы (2.2.1) для радиуса-вектора центра масс имеем
Беря от обеих частей этого равенства вторую производную по времени и замечая, что производная от суммы равна сумме производных, найдем
или где Так как по свойству внутренних сил системы
т.е. произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил. Уравнение (3.4) выражает теорему о движении центра масс системы, которая формулируется следующим образом: центр масс механической системы движется как материальная точка массой, равной массе всей системы, к которой приложены все внешние силы, действующие на систему. Проецируя обе части векторного равенства (3.4) на оси х,у,z, получаем три уравнения в проекциях на оси координат:
Уравнения (3.5) представляют собой дифференциальные уравнения движения центра масс. Из уравнений (3.4) и (3.5) следует, что внутренние силы непосредственно не влияют на движение центра масс, в связи с чем уравнения (3.4) и (3.5) имеют больше практическое значение. Из кинематики известно, что поступательное движение твердого тела полностью определяется движением одной из его точек. Следовательно, решив задачу о движении центра масс тела как материальной точки массой, равной массе всего тела, можно определить поступательное движение всего тела. Следствия из теоремы: 1. Если главный вектор внешних сил ( Из (3.4) если 2. Если проекция главного вектора внешних сил на какую-либо неподвижную ось остается все время равной нулю, то проекция центра масс механической системы на эту ось неподвижна или движется равномерно, т.е. если Вопросы для самоконтроля 1. Сформулируйте теорему о движении центра масс системы. 2. Какое движение твердого тела можно рассматривать как движение материальной точки, имеющей массу данного тела. Почему? 3. При каких условиях центр масс системы находится в состоянии покоя, и при каких условиях он движется равномерно и прямолинейно? 4. При каких условиях центр масс системы не перемещается вдоль некоторой оси?
Дата добавления: 2014-11-08; Просмотров: 2244; Нарушение авторских прав?; Мы поможем в написании вашей работы! |