Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ламинарное и турбулентная течение жидкости




Вывод

Закон Бернулли утверждает, что: v 22+ gz + =const,где v – это скорость жидкости, z – высота жидкости над точкой, для которой записывается уравнение Бернулли, p – давление, ρ – плотность жидкости.Пусть отверстие находится на высоте z=0. У поверхности жидкости в резервуаре, давление p равно атмосферному. Скорость жидкости v в верхней части резервуара можно считать равной нулю, так как уровень поверхности жидкости понижается очень медленно по сравнению со скоростью истечения жидкости через отверстие. На выходе из отверстия z=0 и p также равно атмосферному давлению. Приравнивая левые части уравнения Бернулли, записанные для поверхности жидкости в резервуаре и для жидкости на выходе из отверстия, получим:

gz + patmρ = v 22+ patmρ

v 2=2 gz

v =√2 gz

z равно высоте h, и таким образом:

v =√2 gh.

13. Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате работа, затрачиваемая на это перемещение, рассеивается в виде тепла.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единица измерения в Международной системе единиц (СИ) — Па·с, в системе СГС — пуаз; 1 Па·с = 10 пуаз) и кинематическую вязкость (единица измерения в СИ — м²/с, в СГС —стокс, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести. Прибор для измерения вязкости называется вискозиметром.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011−1012 Па·с.

Закон вязкости (внутреннего трения) Ньютона — математическое выражение, связывающее касательное напряжение внутреннего трения (вязкость) и изменение скорости среды в пространстве (скорость деформации) для текучих тел (жидкостей и газов):

где величина называется коэффициентом внутреннего трения или коэффициентом динамической вязкости (единица СГС — пуаз); с физической точки зрения она представляет собой удельную силу трения при градиенте скорости, равном единице.

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной:

эта величина получила название кинематической вязкости, единица СГС — Стокс. Здесь — плотность среды; — коэффициент динамической вязкости.

Закон Ньютона может быть получен аналитически и приёмами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответствующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

где — средняя скорость теплового движения молекул, − средняя длина свободного пробега.

Неньюто́новской жи́дкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости.[1][2] Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры.

Простейшим наглядным бытовым примером может являться смесь крахмала с небольшим количеством воды. Чем быстрее происходит внешнее воздействие на взвешенные в жидкости макромолекулы связующего вещества, тем выше её [жидкости] вязкость.

Неньюто́новской жи́дкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости.[1][2] Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры.

Простейшим наглядным бытовым примером может являться смесь крахмала с небольшим количеством воды. Чем быстрее происходит внешнее воздействие на взвешенные в жидкости макромолекулы связующего вещества, тем выше её [жидкости] вязкость.

Закон Пуазёйля (иногда закон Хагена — Пуазёйля) — это физический закон так называемого течения Пуазёйля, то есть установившегося течения вязкой несжимаемой жидкости в тонкой цилиндрической трубке. Закон установлен эмпирически в 1839 году Г. Хагеном, а в 1840—1841 годы — независимо Ж. Л. Пуазёйлем. Теоретически объяснён Дж. Г. Стоксом в 1845 году.

При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.

где

· — перепад давления на концах капилляра, Па;

· — секундный объёмный расход жидкости, м³/с;

· — радиус капилляра, м;

· — диаметр капилляра, м;

· — коэффициент динамической вязкости, Па·с;

· — длина капилляра, м.

Формула используется для определения вязкости жидкостей. Другим способом определения вязкости жидкости является метод, использующий закон Стокса.

Тече́ние Пуазёйля — ламинарное течение жидкости через каналы в виде прямого кругового цилиндра или слоя между параллельными плоскостями. Течение Пуазёйля — одно из самых простых точных решенийуравнений Навье — Стокса. Описывается законом Пуазёйля (Хагена — Пуазёйля).

Постановка задачи[править | править вики-текст]

Рассматривается установившееся течение несжимаемой жидкости с постоянной вязкостью в тонкой цилиндрической трубке круглого сечения под действием постоянной разности давлений. Если предположить, что течение будет ламинарным и одномерным (иметь только компоненту скорости, направленную вдоль канала), то уравнение решается аналитически, и для скорости получается параболический профиль (часто называемый профилем Пуазёйля) — распределение скорости в зависимости от расстояния до оси канала:

v (r)= p 1− p 24 ηL (R 2− r 2),

где

· v — скорость жидкости вдоль трубопровода;

· r — расстояние от оси трубопровода;

· R — радиус трубопровода;

· p 1− p 2 — разность давлений на входе и на выходе из трубы;

· η — вязкость жидкости;

· L — длина трубы.

Такой же профиль в соответствующих обозначениях имеет скорость при течении между двумя бесконечными параллельными плоскостями. Такое течение также называют течением Пуазёйля.

14. Для движения тела массой m в вязкой среде с коэффициентом сопротивления k по второму закону Ньютона динамическое уравнение движения будет:

ma = –kv.

Ускорение -первая производная скорости по времени.

В 1851 Джордж Стокс получил выражение для силы трения (также называемой силой лобового сопротивления), действующей на сферические объекты с очень маленькими числами Рейнольдса (например, очень маленькие частицы) в непрерывной вязкой жидкости, решая уравнение Навье — Стокса:

где

· — сила трения, так же называемая силой Стокса,

· — радиус сферического объекта,

· — динамическая вязкость жидкости,

· — скорость частицы.

Если частицы падают в вязкой жидкости под действием собственного веса, то установившаяся скорость достигается, когда эта сила трения совместно с силой Архимеда точно уравновешиваются силой гравитации. Хотя в классической формулировке закон Архимеда выполняется только в статическом случае, а не для движущихся тел, в данном случае выражение для силы Архимеда сохраняет традиционный вид. Результирующая скорость равна

где

· Vs — установившаяся скорость частицы (м/с) (частица движется вниз если , и вверх в случае ),

· — радиус Стокса частицы (м),

· g — ускорение свободного падения (м/с²),

· ρp — плотность частиц (кг/м³),

· ρf — плотность жидкости (кг/м³),

· — динамическая вязкость жидкости (Па с).

· Вязкость (внутренне трение) обуславливается силой трения, возникающей при относительном смещении слоев жидкости. Вязкость жидкости характеризуется коэффициентом вязкости. Эта величина определяет свойства жидкости и связывает силу внутреннего трения в жидкости со скоростью ее частиц.

· Физический смысл коэффициента вязкости можно выяснить из следующих соображений. При установившемся потоке жидкости в трубе различные слои движущейся жидкости имеют различные скорости. Наибольшую скорость имеет слой, текущий по центральной части трубы. Слой, непосредственно прилегающий к стенкам трубы, благодаря прилипанию частичек жидкости к стенкам трубы, имеет скорость . Поэтому распределение скорости текущей жидкости по трубе определяется величиной (градиент скорости), которая показывает изменение скорости на единицу длины радиуса трубы. Согласно закону Ньютона, сила внутреннего трения между слоями определяется формулой:

·

· где η – коэффициент вязкости;

· - градиент скорости;

· S – площадь поверхности, к которой приложена сила.

· Из этой формулы следует:

·

· Если предположить, что S равняется единице поверхности и градиент скорости равен единице, то η = F, то есть коэффициент вязкости численно равен силе внутреннего трения между слоями, действующей на единицу поверхности при градиенте скорости равном единице.

· В системе СИ коэффициент вязкости измеряется в Ньютон секундах на квадратный метр и имеет размерность

·

·

· Основными методами измерения коэффициента вязкости являются метод истечения жидкости из капилляра, разработанный Пуазейлем и метод падения шарика, разработанный Стоксом.

· В настоящей работе описывается метод Стокса. Маленький шарик, изготовленный из материала, плотность которого больше плотности исследуемой жидкости, опускается в исследуемую жидкость, находящуюся в длинной трубке. На движущейся шарик действуют три силы:

· 1. Сила тяжести

·

· где r – радиус шарика;

· ρ – плотность материала шарика;

· g – ускорение силы тяжести ().

· 2. Сила Архимеда, направленная против движения шарика:

·

· здесь ρ1 – плотность вязкой жидкости.

· 3. Сила внутреннего трения (сила сопротивления движения шарика). Эта сила также направлена против движения шарика. Стокс на основании теоретических исследований установил, что если шарик движется в жидкости, не вызывая при своем движении никаких завихрений, то сила сопротивления движения шарика определяется формулой

·

· где - скорость падения шарика, r – радиус шарика, η – коэффициент вязкости жидкости.

· Следует учесть, что при движении шарика имеет место не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, так как шарик обволакивается тонким слоем жидкости, и этот слой жидкости движется вместе с шариком.

· Сила трения с увеличением скорости движения шарика возрастает, следовательно, при движении шарика скорость его может достигнуть такой величины, при которой все три силы, действующие на шарик, будут уравновешены, то есть равнодействующая их будет равна нулю. Такое движение шарика будет равномерным, и шарик будет двигаться по инерции с постоянной скоростью. Уравнение динамики для такого движения будет:

·

· или

·

· откуда

·

 
 

·
При движении шарика в цилиндрическом сосуде с радиусом R и высотой h учет наличия стенок, дна сосуда и верхней поверхности приводит к следующему выражению для коэффициента вязкости, установленному теоретически

·

· здесь R – радиус цилиндра, h – высота жидкости.

· Для шариков малых радиусов 1-2 мм и трубок достаточно большого диаметра малая величина. Ею можно в наших расчетах пренебречь и расчеты вести по формуле (53).

· Следует помнить, что коэффициент вязкости зависит от температуры. При повышении температуры коэффициент вязкости уменьшается. Поэтому при определении коэффициента вязкости следует указать температуру.

Наблюдения показывают, что в природе существует два разных движения жидкости:
1. слоистая упорядоченная течение - ламинарный движение, при котором слои жидкости скользят друг друга, не смешиваясь между собой
2. турбулентная неурегулированная течение, при котором частицы жидкости движутся по сложным траекториям, и при этом происходит перемешивание жидкости.
От чего зависит характер движения жидкости, установил Рейнольдс в 1883 году путем. Эксперименты показали, что переход от ламинарногоруху жидкости к турбулентному движению происходит при определенной скорости (критическая скорость), которая для труб различных диаметров неодинакова: при увеличении диаметра она увеличивается, критическая скорость так же увеличивается при увеличении вязкости жидкости. Рейнольдс вывел общие условия существования ламинарного и турбулентных режимов движения жидкости. По Рейнольдсу режима движения жидкости зависят от безразмерного числа, которое учитывает основные, определяющие это движение: среднюю скорость, диаметр трубы, плотность жидкости и ее абсолютную вязкость. Это число называется числом Рейнольдса:

(5.16)

Число Рейнольдса, при котором происходит переход от одного режима движения жидкости в другой режим, называется критическим . При числе Рейнольдса наблюдается ламинарный режим движения, при числе Рейнольдса - турбулентный режим движения жидкости. Чаще критическое значение числа принимают равным , это значение соответствует переходу движения жидкости от турбулентного режима к ламинарного. При переходе от ламинарного режима движения жидкости к турбулентному критическое значение имеет большее значение. Критическое значение числа Рейнольдса увеличивается в трубах, сужаются, и уменьшается в тех, что расширяются. Это объясняется тем, что при сужении поперечного сечения скорость движения частиц увеличивается, поэтому тенденция к поперечного перемещения уменьшается.

Ламина́рное тече́ние (лат. lāmina — «пластинка») — течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).

[ источник не указан 31 день ] в российской науке пользовались термином Струйчатое течение [ источник не указан 31 день ].

Только в ламинарном режиме возможно получение точных решений уравнения движения жидкости (уравнений Навье — Стокса), например течение Пуазейля.




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 1424; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.049 сек.