КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теореми про рівносильність рівнянь
Означення: два рівняння f1(х)=g1(х) і f2(x)=g2(x) називаються рівносильними, якщо вони задані на одній множині та множини їх розв’язків співпадають. Означення: два рівняння називаються рівносильними, якщо вони задані на одній множині та якщо кожен розв’язок першого рівняння є розв’язком другого рівняння і, навпаки, кожен розв’язок другого рівняння є розв’язком першого рівняння. Означення: Якщо множина розв’язків рівняння є підмножиною множини розв’язків рівняння , то рівняння називають наслідком рівняння . Іншими словами, - є наслідком рівняння , якщо кожний корінь рівняння задовольняє рівняння . Наприклад, рівняння є наслідком рівняння , бо кожний корінь рівняння є коренем рівняння . Отже, ми можемо дати ще одне означення рівносильних рівнянь. Означення: два рівняння називаються рівносильними, тоді і тільки тоді, коли кожне із них є наслідком іншого. Рівняння, множини розв’язків яких порожні, також прийнято вважати рівносильними. Якщо згадати, що рівняння є предикатами, то два рівняння будуть рівносильними, якщо предикати f1(х)=g1(х) і f2(x)=g2(x) еквівалентні. Для того, щоб з’ясувати, чи рівносильні рівняння, слід перевірити виконання умов наведених означень рівносильних рівнянь. Покажемо, як це робити на прикладі наступної вправи. Теорема 1: Якщо вираз φ(х) визначений для всіх х є Х, то рівняння f(х)=g(х) (І) і f(х)+φ(х)=g(х)+φ(х) (ІІ) рівносильні. Наслідок 1: будь-яке рівняння виду f(х)=g(х) рівносильне рівнянню виду F(x)=0. Наслідок 2: будь-який член рівняння можна переносити із однієї частини рівняння в другу, міняючи при цьому його знак на протилежний. Теорема 2: Якщо вираз φ(х) визначений і не перетворюється в нуль для всіх хєХ, то рівняння f(х)=g(х) (І) і f(х)●φ(х)=g(х)●φ(х) (ІІІ) рівносильні.
Дата добавления: 2014-12-16; Просмотров: 678; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |