КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Неопределенный интеграл. Непосредственное интегрирование
Решение. а) Подставляя в функцию вместо х предельное значение , определим предел числителя и знаменателя. т. к. Аналогично: Имеем неопределенность вида . Используем правило Лопиталя: б) в) Замечание. Если, применив правило Лопиталя, снова получили неопределенность или , то снова применяем правило до тех пор, пока неопределённость не будет раскрыта. Функция , определенная на интервале , называется первообразной для функции , определенной на том же интервале , если Если — первообразная для функции , то любая другая первообразная для функции отличается от на некоторое постоянное слагаемое, т. е. где . Неопределенным интегралом от функции называется совокупность всех первообразных для этой функции. Обозначается неопределенный интеграл: где Операция нахождений первообразной для данной функции называется интегрированием. Интегрирование является обратной операцией к дифференцированию: Для проверки правильности выполненного интегрирования необходимо продифференцировать результат интегрирования и сравнить полученную функцию с подынтегральной. Свойства неопределенного интеграла: 1. 2. 3. 4. Таблица основных интегралов 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Каждая из приведенных в таблице формул справедлива на промежутке, не содержащем точек разрыва подынтегральной функции. Вычисление интегралов с использованием таблицы и основных свойств называют непосредственным интегрированием. Пример 5. Пользуясь таблицей основных интегралов и свойствами неопределенного интеграла, найти интегралы
Дата добавления: 2014-12-16; Просмотров: 667; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |