КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гармония золотых пропорций 7 страница
Возьмем эталонный метр. Его линейная длина равна одной сорокамиллионной длины парижского меридиана. Но как единица эталона длины он определяется равным 1650763,73 ≈ 1,65∙106 длин волн в вакууме излучения, соответствующего переходу между уровнями 2р1с и 5d5 атома криптона-86. Т.е. в длине метра укладывается именно такое количество волн криптона. И, следовательно, длина одной волны, испускаемой Землей, будет соответствовать 1,65∙106 λз волн криптона. Пропорциональность длины волны криптона длине некоторого предмета и определяется при измерении этого предмета метром. Т.е. сопоставляются одинаковые свойства предмета и эталона, скрытые от взгляда структурой твердого вещественного метра. И здесь подобное определяется подобным. Вот тот физический процесс, который используется для нахождения протяженности длины, ширины и высоты предмета. При этом визуально для измерения выделяется не сопоставление длин волн, а тот телесный предмет, который это количество волн вмещает. Не волна становится отдельным для измерения, а протяженность по волновому качеству самого измерительного эталона, как обладающего свойством отдельного. В геометрии волновое движение отсутствует. А протяженность обозначается искусственной фигурой – линией. Линия не является ни свойством и ни веществом. К колебаниям она не имеет никакого отношения. И никакими своими качествами не может быть сопоставлена с вещественным эталоном. Однако процесс измерения линии полностью аналогичен процессу измерения вещественного предмета. И эта аналогия является следствием того, что линия на любом фоне или выраженная предметом всегда является отдельностью. Качество отдельного присуще и эталону измерения и произвольной линии. По этому качеству и только по этому качеству линия и метр подобны друг другу. Это качество и замена взаимосвязей природных свойств аксиомами обусловливают возможность использования в статической геометрии физического свойства протяженности. Другие физические свойства применения в ней не находят. Опора на два природных свойства и определяет представление о самостоятельности геометрических свойств и их независимости от природы. Опора на двуединое свойство и делает статическую геометрию математическим предметом, таким же, как и все остальные математические предметы. В статико-динамической геометрии кроме длины как выражения природного свойства протяженности, проявляют себя свойства взаимосвязи элементов фигуры и плотностность как отображение полевого взаимодействия тел в пространстве и их деформации под воздействием пространства. Причем в некоторой степени аналогами тел выступают несобственные точки и несобственные плоскости Дезарга. Фигуры – несобственные точки, уменьшение пространственной плотностности от которых происходит по тем же законам, по которым изменяются сила взаимодействия гравитационных и электромагнитных полей. Плотностные свойства, отображающие природные свойства в геометрии, качественно меняют ее характер, превращая из статической в полудинамическую, в которой одновременно присутствуют и подвижные и неподвижные элементы. В геометрию, в которой наличествует движение при отсутствии времени как длительности. Отсутствие времени как свойства тел и «поддерживает» эту геометрию в неопределенном положении между физикой и математикой. С одной стороны она оказывается статической, и как таковая может быть отнесена к предмету математики. С другой ее фигуры и элементы фигур могут «перемещаться» в пространстве и пропорционально деформироваться при перемещении, − качества, которыми обладают только природные системы. Качеством пропорционального деформирования не обладают, например, фигуры статической геометрии. Пропорционирование фигур и их элементов в классической геометрии явление случайное или искусственное. В статике отсутствуют внутренние связи между элементами фигур и потому практически невозможно достижение гармоничныхпропорций между фигурами и их элементами не только в проекте, но и в практике возведения объектов. Именно поэтому в геометрии и связанных с нею науках, и в частности в физике, не проявляют себя золотое число и золотые пропорции. В статико-динамической геометрии пропорционирование фигур и их элементов смешанное (простое и гармоническое) и происходит постоянно. Оно – следствие системной структуры фигур всеобщей взаимосвязи их свойств и деформации при перемещении в плотностном пространстве. В процессе перемещения фигур в определенных областях пространства может появляться как отношение элементов фигур золотое число, а вместе с ним проявляются зачатки гармоничного пропорционирования по золотым пропорциям. Золотое пропорционирование в статико-динамической геометрии есть случайное следствие ее динамичности. Тем не менее, оно позволяет получать гармоничные пропорции в том случае, когда в элементы движущейся фигуры положены золотые отношения. Динамичность фигур является той основой, которая обусловливает появление рядов Фибоначчи и золотых чисел в данной геометрии и потенциальную возможность отображения в процессе нарастания рядов Пилецкого золотых матриц. Статика не попадает в мир золотых чисел и пропорций. Она не образует связи между элементами фигур и числами и потому не «чувствует» взаимосвязи золотых чисел. На это способны только динамические системы. Повторимся: Фигуры статико-динамической геометрии обладают качеством природной системы. И это качество как бы свидетельствует о ее частичной принадлежности к физическим наукам. Немного о динамической геометрии. В этой геометрии впервые появляется время как рядовое физическое свойство. И наряду с ним в геометрию сразу же входят все остальные свойства природы, превращая геометрию из математической науки в науку физическую. Естественно, что все они входят в систему геометрии, а не в обиход геометров, поскольку количество природных свойств бесчисленно. Все свойства динамической геометрии равнозначны и фундаментальны. Ни одно из них не может исчезнуть или быть приравнено нулю, поскольку это равнозначно исчезновению тела. В динамической геометрии изначально наличествует только гармоничное пропорционирование на основе золотых чисел базисного ряда русской матрицы [2]. Все природные свойства, рассматриваемые физическими науками, имеют не только количественную величину, но и качественное числовое отображение. Они взаимосвязаны и взаимообусловлены через качественное числовое отображение, через кратные золотому числу качественные коэффициенты физической размерности (КФР). Динамическая геометрия качественно отличается от классической математики уже тем, что имеет дело со всеми физическими свойствами тел, а не только с их количественным отображением и является открытой системой, наиболее полно выражающей систему природных взаимосвязей и взаимодействий. В ней отсутствуют аксиомы и теоремы, а система логичного доказательства опирается на инвариантные взаимосвязи свойств. В динамической геометрии фигуры, как таковые, отсутствуют, поскольку они есть крайняя степень упрощения связей. К ним прибегают только для пояснения тех или иных взаимосвязей свойств. Другими словами динамическая геометрия уже не является математической дисциплиной, а оказывается составной частью физики и может быть названа физической геометрией. Геометрией, описывающей динамику реальных природных процессов.
5.2. Структура русских матриц
С русской матрицей мы познакомились при изучении секретов старинных соизмерительных инструментов - древнерусских саженей. Необъяснимой особенностью этих инструментов являлось то, что их было много (десятки), они были несоизмеримы между собой, а при разметке объекта не допускалось разбиение осевых (координатных) размеров одной саженью. Разметка обязательно начиналась с высоты (координата - z) одной саженью, далее ширины (координата - х) - другой саженью и, наконец, длины (координата - у) - третьей саженью. Все оси разбивались только четным числом саженей. Было непонятно: зачем и как пользоваться десятками саженей, осложняя работу? Почему саженей много, разве нельзя обойтись одним измерительным инструментом? Почему они несоизмеримы между собой? Как могла сложиться такая архаичная система измерения? Почему она оставалась в употреблении в течение многих тысячелетий? И т. д. На эти многочисленные вопросы десятилетиями не находились ответы. Однако А.А. Пилецкий [25] сумел свести все многообразие не пропорционированных друг другу древнерусских саженей к 15 «типоразмерам», показать, что все они пропорциональны золотому числу Ф и подойти к построению матрицы, отражающей их взаимосвязи, используя для этого применяемый только на Руси метод раздвоения-удвоения для получения из саженей более мелких измерительных инструментов. Согласно древнему методу пропорционирования, как уже упоминалось, сажень делилась пополам, получалось полсажени. Полсажени надвое - локоть и так далее до вершка. Деление заканчивалось на вершке. Именно метод раздвоения удвоения привел к воссозданию объемной русской матрицы (подробнее [23, 26]). Приведем для примера фрагмент матрицы А. Пилецкого (фрагмент 1), включающий в см все древнерусские сажени (выделены полужирным шрифтом[23,25]: Фрагмент 1
Отметим, что сажени, являясь строительным инструментом, тем не менее, не относятся к мерным линейкам. Они инструмент соизмерительный, инструмент формирования площадей и объемов, пропорциональных естественным природным площадям и объемам. Однако в бесконечной по вертикали и горизонтали матрице, заполненной числовыми рядами взаимосвязанных геометрических прогрессий, фрагмент 1 содержит выделенное числовое поле, отсутствует базисная 1. Чтобы ее получить достаточно выделенный ряд чисел поля, например, диагональ 33,60 – 603,2, идущую снизу вверх слева направо (полужирный курсив), или все числа матрицы, разделить на любое из находящихся на ней чисел. Например, на 230,4 и получить диагональ – элемент русского ряда (фрагмент 2, диагональ выделена полужирным курсивом). Аналогичное можно проделать и с числами диагонали 1408 – 5,250, идущей сверху вниз и слева направо (фрагмент 2, диагональ выделена курсивом), с числами горизонтального ряда и т.д. Вообще, для получения классического числового поля русской матрицы достаточно просто разделить все числа поля фрагмента 1 на одно из входящих в матрицу чисел. Эта операция проделана с тремя первыми столбцами фрагмента 1 поделенными на 230,4, и полученные числа выделены полужирным курсивом на фрагменте 2. Фрагмент 2.
Приведем запись формообразующих центров числовых полей двух матриц 1' и 2':
Основу структуры русской матрицы 3 составляет двойная крестовая последовательность записи чисел, при которой центр матрицы образует базисная 1 (единица), и в одной с ней строке находятся цифры горизонтального ряда, а перпендикулярно ей вертикальный (базисный) ряд, формирующий числовое поле матрицы, начинающийся с рационального или иррационального числа. По диагонали через 1 снизу вверх слева направо - диагональный ряд, начинающийся либо с золотого числа Ф либо с Ф в степени, либо степень от Ф. Числовое поле матрицы распространяется в бесконечность во все направления. Плоскую матрицу формируют три числа (объемную - четыре): базисная 1, находящаяся в центре матрицы и наличествующая во всех матрицах, иногда в виртуальном виде; золотое число, следующее по диагонали от 1, как в виде Ф, так и Ф в степени или степень от него; рациональное или иррациональное число над 1 (кроме Ф). Плоскость числового поля матрицы образуется как бы невидимыми квадратиками-клетками, в которые вписываются числа. Приведем фрагмент русской матрицы 3: Матрица 3
Матрица 3, как и другие русские матрицы, имеет объемную слоистую структуру. Так, числа 1,414..., 1,272..., 1,144... и т.д., образует ряд чисел, называемый также слоем, и заполняют слоями не только клетки вертикальной, видимой нами плоскости, но и те, которые существуют за ними и за данной плоскостью не наблюдаемы. За ними находятся пропорциональные им числа другого слоя-плоскости, еще дальше третьего и так далее в бесконечность. Перед ними, т.е. в нашу сторону, виртуально, продолжается такое же бесконечное поле взаимосвязанных и связанных с числами плоскости матрицы 3 числовых плоскостей. Их можно представить и по-другому, проведя через базисную 1 и другие числа горизонтального ряда горизонтальную плоскость-слой. Эта плоскость будет разграфлена такими же клетками, как и вертикальная плоскость и в каждой клетке будут находиться числа, пропорциональные числам вертикального слоя и Ф. То же произойдет и с горизонтальной плоскостью проведенной через числа 1,414, 1,272, 1,144 и т.д. В результате клетки каждого слоя объемной матрицы как бы образуют единичные кубические объемы-ячейки, содержащие по одному иррациональному и редко рациональному числу. И все числа бесконечного объема матрицы оказываются связанными между собой определенной числовой зависимостью, а следовательно, базисная единица является невидимой составляющей каждого числа. Далее речь пойдет в основном о вертикальных слоях матриц. Отмечу основные особенности структуры русских матриц: основу каждой матрицы составляет базисная 1; плоскость матрицы имеет двойную крестовую структуру расположения чисел с центром - базисной 1 (фрагмент матрицы 3); числовое поле матрицы объемно и бесконечно во все стороны; все члены любой части числового поля матрицы индивидуальны, иррациональны, взаимосвязаны, но каждое число не равно никакому другому числу и по другую сторону базисной 1, оно имеет свой обратный аналог; числовое поле плоской матрицы формируется тройкой чисел, а объемной матрицы - четверкой чисел. Количественные величины этих четырех чисел позволяет образовывать бесчисленное количество матриц со свойствами золотых пропорций; базисная диагональ с числом, пропорциональным Ф, образуется только по структуре аналогичной русскому или египетскому ряду; крестовая форма между столбцом и строкой матрицы обусловливает возможность использовать их как координатные системы для нахождения места любого числа ее множеств по показателю степени строки или столбца; базисный ряд может начинаться с любого числа как рационального, так и иррационального, но не может начинаться с Ф. То, что матрица 3 имеет сакральную структуру, не приходится даже доказывать. Она – формальное математическое целое. Она, как и все матрицы аналогичной структуры, базируется на том же русском числовом ряде и потому включает в себя сакральную структуру. В центре матрицы - базисная 1, на которой, с любой стороны, заканчивается одно качество числового ряда и начинается другое. Все бесконечное количество чисел поля аналогичных матриц связано друг с другом через базисную 1 и, следовательно, имеет частичку ее качества. (Все, опять же, по Библии.) Все они связаны всеобщей инвариантной зависимостью, составляя взаимообусловленное числовое «население» матриц. И можно констатировать: как текст Нового Завета пронизан Божественностью Христа, его учением, и жизнью апостолов, так и все содержание динамической геометрии базируется на вещественности мира, на системе 1 \12, всеобщем движении и качественном изменении (деформации). И так же как жизнь Христа доказывает существование Бога-Отца, так и структура и взаимосвязи русской матрицы подтверждают то же в опосредственной форме, становясь математическим подтверждением существования Бога. Но вернемся к числовому полю матриц. Перед нами как бы необъятно расширенный вариант русского ряда, структура которого обладает множеством новых свойств. Вот некоторые из них. Все последовательные тройки диагональных чисел матрицы 3 повторяют свойство русского ряда «плести гирлянду» подобных треугольников. Если в матрице 3 все числа каждой клетки возвести в квадрат, то получим матрицу 4, главная диагональ которой структурирована египетским рядом. Тот же результат достигается и в том случае, если, начиная от базисной 1, и по горизонтали и по вертикали вычеркиваем через один столбец слои, начиная с числа 1,272..., и через строку, начиная с 1,414..., и оставшееся поле матрицы «сплачиваем», сдвигая слои к базисной 1 (матрица 4). Если же вычеркивать слои и столбцы через строку, начиная с крестовины базисной 1, и сплотить оставшееся поле матрицы, то получим матрицу, обладающую теми же свойствами, но с виртуальной 1. Последовательность диагональных чисел матрицы 4 после сплочения из матрицы 3, «теряет» способность образовывать «гирлянды» треугольников, но у них ярко проявляется достаточно скрытая в других формах матриц качество матричной «вязи», заключающееся в возможности получения методом сложения или вычитания из одних чисел других, находящихся в том же поле. Матрица 4
Приведем несколько примеров матричной вязи, опираясь на известное на сегодня правило сложения и вычитания Фибоначчи. Напомним его и покажем еще некоторые из них на примере числового поля, окружающего базисную 1, отметив, что в примерах она не принимается за базисную, поскольку по той же конфигурации могут складываться любые числа поля [23]. Получаем 1, соблюдая правило Фибоначчи, когда сумма двух последовательных нижних чисел по диагонали слева направо снизу вверх равна верхнему числу. Те же числа находятся при диагональном вычитании из верхнего любого из двух нижних чисел: 0,382 + 0,618 = 1. Складывая по диагонали вверх три числа подряд, получаем в результате число, стоящее в таблице над последним слагаемым: 0,382 + 0,618 + 1 = 2. Берем число 0,191, стоящее в таблице под 0,382. И складываем его методом единицы (движение по полю матрицы как бы выписывает единицу) с числом 0,809, находящимся от него через два числа вверх, вправо по диагонали. Результат сложения находится слева от числа 0,809: 0,191 + 0,809 = 1. Используем метод двойного хода “шахматного коня”: с поля 0,236 “переступаем” через число 0,472, а от числа 0,944 движемся направо к 0,764 и складываем его с первым: 0,236 + 0,764 = 1. “Шаги” через числа могут быть и более длинными. Например, возьмем число 0,056 на главной диагонали. Через пять чисел вверх на числе 1,783 повернем вправо и через два числа найдем 0,944. Сложим их, сделав один шаг наверх и два вправо, находим 1: 0,056 + 0,944 = 1. Или, по тем же правилам, от числа 0,118 пройдем к числу 2 и, сделав ход вверх и два вправо, имеем: 0,118 + 2 = 2,118. Или по главной диагонали: 0,0213 + 0,0344 + 0,0902 + 0,236 + 0,618 = 1. Количество слагаемых может возрастать. Например, суммируя от 0,146 по главной диагонали, двигаясь через число 0,382, к 1 и от него, тоже через число влево, можно получить результат 1,528: 0,146 + 0,382 + 1 = 1,528, оставаться последовательным: 0,146 + 0,382 + 0,472 = 1, становиться фрактальным: 0,1803 + 0,236 + 0,5836 = 1, или образовывать различные комбинации из них: 0,08514 + 0,1114 + 0,146 + 0,2755 + 0,382 = 1 и т.д. Количество примеров, и не только сложения, но и всех действий арифметики, можно множить и множить. Правила их использования относятся ко всем числам поля и в совокупности со степенными числовыми рядами образуют матричную «вязь», охватывающую все числовое поле как матрицы 3, так и матрицы 4. Матричная вязь есть следствие отдельности каждого элемента числового поля, и отображает принадлежность его к числовому полю как к целому. Именно матричная «вязь» обеспечивает корректность операций между золотыми числами полей этих матриц. Русскую матрицу можно образовать, заполнив ее не иррациональными числами, а их отображениями в угловых единицах (в градусах). В такой матрице 5 необычная система углов представляет, по-видимому, некую величину поворота относительно базисной единицы. Хотя не исключена иная, еще не выявленная взаимосвязь. Немаловажно так же и то, что в матрице 5 наряду со значениями целых и дробных углов, например, 30о, 60о, 72о, проявляется число p с точностью как минимум до десятого знака (как cos 72o). И можно показать, что между золотым числом и коэффициентом p имеется взаимосвязь, отображаемая формулой: 1/ Ф = (1 - Ö5)/2 = 2 cos 72о = 1∕2 sin (90о − 36о) Матрица 5
Приведем еще один вариант матрицы, связанный как с древнерусскими саженями, так и с размерностью физических уравнений. Начнем с саженей. Оказалось, что длины древних саженей были извлечены из числового поля матрицы, в которой число, задающее шаг базисного столбца, является малой темперированной секундой музыкального ряда, равной 1,05945... и получается извлечением корня двенадцатой степени из 2, главная диагональ кратна Ф, а сама матрица имеет гармоническую структуру, относящуюся не только к музыке, но и самым непосредственным образом к физике. Числа базисного ряда гармонической матрицы 6 являются качественными коэффициентами физической размерности (КФР) свойств тел, составляя основу теории размерности. КФР позволяет принципиально по-иному подходить к этой теории и к формализации физических уравнений (ниже метод КФР будет разобран подробнее). Приведем фрагмент матрицы 6.
Дата добавления: 2014-12-07; Просмотров: 366; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |