КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема 5. Исследование функции и построение графика
Определение Внутренняя точка интервала называется точкой максимума (минимума)функции , если существует такое , что для всех из интервала , содержащегося внутри интервала , выполняется неравенство (). Точки максимума и минимума называют точками экстремума (локального экстремума) функции. Точки, в которых производная обращается в ноль, называют стационарными точками. Приведем формулировки теорем, используемых при исследовании функций. Достаточное условие строгого возрастания (убывания) функции: Если () в интервале , то строго возрастает (убывает) в этом интервале. Промежутки, в которых функция возрастает (убывает), называются промежутками монотонности функции. Чтобы найти промежутки монотонности функции необходимо:
Необходимое условие экстремума функции: Если функция дифференцируема в точке и достигает в этой точке максимума (минимума), то . Точками экстремума могут быть только те точки, в которых производная равна нулю, либо не существует. Точки, в которых производная равна нулю или не существует, называют точками, подозрительными на экстремум, или критическими точками. Достаточные условия экстремума функции: Если при переходе через точку , подозрительную на экстремум, производная меняет знак, то точка является точкой экстремума. При этом если в некоторой окрестности точки для и для , то является точкой максимума. Если же в этой окрестности для и для , то – точка минимума. Другим достаточным признаком существования экстремума в стационарной точке является условие (тогда это точка максимума) и (тогда это точка минимума). При этом считается, что имеет непрерывную вторую производную в некоторой окрестности точки . Определение График функции называетсявыпуклым в интервале , если он расположен ниже касательной проведенной в любой точке этого интервала. Определение График функции называется вогнутымв интервале , если он расположен выше касательной, проведенной в любой точке этого интервала. Достаточные условия выпуклости (вогнутости) графика функции: Если в интервале , то график функции является выпуклым в этом интервале; если же , то в интервале график функции вогнутый. Точка графика функции, отделяющая его выпуклую часть от вогнутой, называется точкой перегиба. Если ─ абсцисса точки перегиба графика функции , то вторая производная равна нулю или не существует в этой точке. Точки, в которых или не существует, называются критическими точками второго рода. Если при переходе через критическую точку второго рода вторая производная меняет знак, то точка есть точка перегиба. Определение Прямая l называется асимптотой кривой y = f(x), если расстояние точки М(х,у) на кривой от прямой l стремится к нулю при неограниченном удалении этой точки по кривой от начала координат, (т.е. при стремлении хотя бы одной из координат точки к бесконечности). Прямая является вертикальной асимптотой кривой y = f(x), если: или Прямая является горизонтальной асимптотой кривой y = f (x), если существует или Прямая является наклонной асимптотой кривой y = f(x), если существуют пределы: или При исследовании функции и построении ее графика удобно придерживаться следующего плана:
Дата добавления: 2014-12-27; Просмотров: 470; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |