КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Средний арифметический и средний гармонический индексы. 2 страница
Задача № 2 По следующим данным определите средний уровень официально зарегистрированной безработицы в целом по Приволжскому федеральному округу (2006 г.):
Оцените вариацию показателя уровня безработицы по совокупности субъектов ПФО с помощью показателей вариации (вычислите средний квадрат отклонений (дисперсию) и среднее квадратическое отклонение, коэффициент вариации). Обратите внимание на то, что уровень безработицы – показатель качественный (расчетный). Чему равна мода? Сделайте выводы.
Задача № 3 Для определения размера естественной убыли товара «А» были подвергнуты выборочному обследованию 64 равные по весу партии этого товара. В результате обследования оказалось, что средний процент естественной убыли равен 0,8 при среднем квадратическом отклонении 0,2%. С какой вероятностью можно утверждать, что процент естественной убыли товара «А» не превышает 0,85%? Задача № 4 Имеются по УР следующие данные о численности не занятых трудовой деятельностью граждан, зарегистрированных в органах государственной службы занятости (на конец года), тыс. чел.:
Для анализа динамики показателя численности безработных вычислите: 1) абсолютные приросты, темпы роста и темпы прироста по годам и к 1998 г., абсолютное содержание одного процента прироста. Полученные показатели представьте в виде таблицы; 2) среднегодовые показатели - величину уровня ряда; абсолютный прирост темп роста и прироста. Сделайте выводы. Постройте график динамики уровня ряда за период 1998-2006 гг., проведите аналитическое выравнивание ряда (постройте математическую модель и график), сделайте прогноз на 2007 г.
Задача № 5 На основании данных о валовой продукции по группе предприятий определите индекс физического объема продукции в целом по всем предприятиям. При этом известно, что в отчетном периоде по сравнению с базисным оптовые цены на продукцию увеличились по предприятию № 1 – на 5 %, по предприятию № 2 - на 3 % и по предприятию № 3 – на 2,5 %.
Как изменилась стоимость валовой продукции в абсолютном и относительном выражении?
Задача № 6 Для изучения тесноты связи между выпуском валовой продукции на один завод (результативный признак – у) и оснащенностью заводов основными производственными фондами (факторный признак – х) вычислите по полученным средним показателям задачи №1 линейный коэффициент корреляции, коэффициент детерминации и эмпирическое корреляционное отношение. Поясните их значение. Вариант 5 Задача № 1 Имеются следующие отчетные данные 26 заводов одной из отраслей промышленности:
В целях изучения зависимости между среднегодовой стоимостью основных производственных фондов и выпуском валовой продукции произведите группировку заводов по среднегодовой стоимости основных производственных фондов, образовав шесть групп заводов с равными интервалами. По каждой группе заводов подсчитайте: 1) число заводов; 2) среднегодовую стоимость основных производственных фондов – всего и в среднем на один завод; 3) стоимость валовой продукции – всего и в среднем на один завод; 4) размер валовой продукции на один рубль основных производственных фондов (фондоотдачу). По данным валовой продукции определите общую дисперсию, межгрупповую и среднюю из групповых, с помощью коэффициента детерминации определите влияние стоимости основных фондов на размер валовой продукции. Результаты представьте в виде групповой таблицы. Напишите краткие выводы.
Задача № 2 Имеются данные об остатках вкладов и их количестве по валютным депозитам в отделениях банка на начало года:
Определите среднее значение депозита в расчете на один вклад в целом по банку в базисном и отчетном году. Рассчитайте средний квадрат отклонений (дисперсию) и среднее квадратическое отклонение, коэффициент вариации по данным базисного года. Сделайте выводы. Отобразите на графике полигон распределения банков по размеру вклада в расчете на 1 вкладчика (2 графика). Задача № 3 Партия готовых изделий должна иметь не менее 90% изделий первого сорта. Определите, удовлетворяет ли она этому требованию с вероятностью, близкой к достоверности, если при обследовании 900 единиц изделия первого сорта составили 92%.
Задача № 4 По УР имеются данные о количестве зарегистрированных браков
Для анализа динамики показателя количества браков вычислите: 1) абсолютные приросты, темпы роста и темпы прироста по годам и к 1998 г., абсолютное содержание одного процента прироста. Полученные показатели представьте в виде таблицы; 2) среднегодовые показатели - величину уровня ряда; абсолютный прирост темп роста и прироста. Сделайте выводы. Постройте график динамики уровня ряда за период 1998 -2006 гг., проведите аналитическое выравнивание ряда (постройте математическую модель и график), сделайте прогноз на 2007 г.
Задача № 5 Имеются следующие данные по предприятию за два месяца:
Исчислите изменение среднего уровня заработной платы (переменного состава), а также индексы постоянного состава и структурных сдвигов. Подтвердите расчеты абсолютными показателями. Сделайте выводы.
Задача № 6 Для изучения тесноты связи между выпуском валовой продукции на один завод (результативный признак – у) и оснащенностью заводов основными производственными фондами (факторный признак – х) вычислите по полученным средним показателям задачи №1 линейный коэффициент корреляции, коэффициент детерминации и эмпирическое корреляционное отношение. Поясните их значение.
Вариант 6 Задача № 1 Имеются следующие отчетные данные 24 заводов одной из отраслей промышленности:
В целях изучения зависимости между среднегодовой стоимостью основных производственных фондов и выпуском валовой продукции произведите группировку заводов по среднегодовой стоимости основных производственных фондов, образовав шесть групп заводов с равными интервалами. По каждой группе заводов подсчитайте: 1) число заводов; 2) среднегодовую стоимость основных производственных фондов – всего и в среднем на один завод; 3) стоимость валовой продукции – всего и в среднем на один завод; 4) размер валовой продукции на один рубль основных производственных фондов (фондоотдачу). По данным валовой продукции определите общую дисперсию, межгрупповую и среднюю из групповых, с помощью коэффициента детерминации определите влияние стоимости основных фондов на размер валовой продукции. Результаты представьте в виде групповой таблицы. Напишите краткие выводы.
Задача № 2 Имеются следующие данные о строительстве жилья в Приволжском федеральном округе в 2005 году:
Сравните вариацию показателей ввода в действие жилья в сельской местности и ввода в действие жилых домов в целом. Рассчитайте по каждой совокупности среднюю величину, а также показатели вариации. Сделайте выводы. Задача № 3 Рассчитайте предельную ошибку среднего веса изделия, если при собственно-случайной бесповторной выборке 600 изделий он оказался равным 145 г, среднее квадратическое отклонение – 10 г. При этом в партии остались не обследованными 2400 изделий. Уровень гарантийной вероятности 0,997.
Задача № 4 По УР имеются данные о количестве зарегистрированных разводов
Для анализа динамики показателя количества разводов вычислите: 1) абсолютные приросты, темпы роста и темпы прироста по годам и к 1998 г., абсолютное содержание одного процента прироста. Полученные показатели представьте в виде таблицы; 2) среднегодовые показатели - величину уровня ряда; абсолютный прирост темп роста и прироста. Сделайте выводы. Постройте график динамики уровня ряда за период 1998 -2006 гг., проведите аналитическое выравнивание ряда (постройте математическую модель и график), сделайте прогноз на 2007 г. Задача № 5 Имеются следующие данные по предприятию:
На основании имеющихся данных вычислите: а) общий индекс затрат на производство продукции; б) общий индекс себестоимости продукции; в) общий индекс физического объема производства продукции. Проверьте связь с помощью абсолютных отклонений.
Задача № 6 Для изучения тесноты связи между выпуском валовой продукции на один завод (результативный признак – у) и оснащенностью заводов основными производственными фондами (факторный признак – х) вычислите по полученным средним показателям задачи №1 линейный коэффициент корреляции, коэффициент детерминации и эмпирическое корреляционное отношение. Поясните их значение. Вариант 7 Задача № 1 Имеются следующие отчетные данные 10%-го выборочного обследования 25 цехов завода одной из отраслей промышленности:
В целях изучения зависимости между производственным стажем и тарифным разрядом произведите группировку цехов по производственному стажу, образовав пять групп цехов с равными интервалами. По каждой группе цехов подсчитайте: число цехов; средний производственный стаж; средний тарифный разряд. По данным разряда определите общую дисперсию, межгрупповую и среднюю из групповых, с помощью коэффициента детерминации определите влияние стоимости стажа на разряд. Результаты представьте в виде групповой таблицы. Напишите краткие выводы.
Задача № 2 Имеются следующие данные 10%-й выборки магазинов из двух торгов:
Вычислите средний дневной товарооборот продавца: 1) по торгу 1; 2) по торгу 2. Рассчитайте средний квадрат отклонений (дисперсию и среднее квадратическое отклонение, коэффициент вариации по данным каждого торга). В каком случае вариация сильнее? Сравните моду и медиану по каждой совокупности.
Задача № 3 По данным задачи № 2 определите предельную ошибку выборки торга № 1, если известно, что проводится отбор случайным бесповторным способом с вероятностью 0,997.
Задача № 4 Имеются данные по УР о численности пенсионеров, состоящих на учете в органах социальной защиты населения на конец года, тыс. чел.:
Для анализа динамики численности пенсионеров вычислите: 1) абсолютные приросты, темпы роста и темпы прироста по годам и к 2002 г., абсолютное содержание одного процента прироста. Полученные показатели представьте в виде таблицы; 2) среднегодовые показатели - величину уровня ряда; абсолютный прирост темп роста и прироста. Сделайте выводы. Постройте график динамики уровня ряда за период 2002-2006 гг., проведите аналитическое выравнивание ряда (постройте математическую модель и график), сделайте прогноз на 2007 г.
Задача № 5 Имеются следующие данные по предприятию:
На основании имеющихся данных вычислите: а) общий индекс затрат на производство продукции; б) общий индекс себестоимости продукции; в) общий индекс физического объема производства продукции. Проверьте связь индексов и абсолютных отклонений производственных затрат по факторам.
Задача № 6 Для изучения тесноты связи между разрядом (результативный признак – у) и производственным стажем (факторный признак – х) вычислите по полученным средним показателям задачи №1 линейный коэффициент корреляции, коэффициент детерминации и эмпирическое корреляционное отношение. Поясните их значение. Вариант 8 Задача № 1 В отчетном периоде работа предприятий отрасли характеризуется следующими данными:
В целях изучения зависимости между среднегодовой стоимостью основных производственных фондов и выпуском валовой продукции произведите группировку заводов по среднегодовой стоимости основных производственных фондов, образовав шесть групп заводов с равными интервалами. По каждой группе заводов подсчитайте: 1) число заводов; 2) среднегодовую стоимость основных производственных фондов – всего и в среднем на один завод;; 3) стоимость валовой продукции – всего и в среднем на один завод; 4) размер валовой продукции на один рубль основных производственных фондов (фондоотдачу). По данным валовой продукции определите общую дисперсию, межгрупповую и среднюю из групповых, с помощью коэффициента детерминации определите влияние стоимости основных фондов на размер валовой продукции. Результаты представьте в виде групповой таблицы. Напишите краткие выводы.
Задача № 2 Имеются следующие данные по двум группам заводов промышленного объединения:
Вычислите средний процент выполнения плана выпуска продукции: 1) первой группы заводов; 2) второй группы заводов. Укажите, какой вид средней надо применить для вычисления этих показателей. Сравните средние проценты выполнения плана двух групп заводов. Вычислите средний квадрат отклонений (дисперсию) и среднее квадратическое отклонение, коэффициент вариации по данным первой группы. Задача № 3 Произведен анализ 1600 административных дел, рассматриваемых судом высшей инстанции. Среднее количество отклоненных дел Х = 4,8% при среднем квадратическом отклонении 0,4%. Какая вероятность того, что среднее количество отклоненных дел 4,7 – 4,9%?
Задача № 4 По УР имеются данные о вводе в действие жилых домов и общежитий, тыс. м2:
Для анализа динамики показателя ввода в действие жилых домов и общежитий вычислите: 1) абсолютные приросты, темпы роста и темпы прироста по годам и к 1998 г., абсолютное содержание одного процента прироста. Полученные показатели представьте в виде таблицы; 2) среднегодовые показатели - величину уровня ряда; абсолютный прирост темп роста и прироста. Сделайте выводы. Постройте график динамики уровня ряда за период 1998 -2006 гг., проведите аналитическое выравнивание ряда (постройте математическую модель и график), сделайте прогноз на 2007 год.
Задача № 5 Динамика себестоимости и объема производства изделия по двум малым предприятиям характеризуется следующими данными:
На основании имеющихся данных вычислите (по двум видам продукции вместе) динамику среднего уровня производительности труда стоимостным методом: 1) индекс производительности труда переменного состава; 2) индекс производительности труда состава; 3) индекс влияния структурных сдвигов изменения количества затраченного времени.
Дата добавления: 2014-12-23; Просмотров: 717; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |