КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теоретический материал. Тема: Вычисление производных функций по определению производной
Тема: Вычисление производных функций по определению производной Цель: Формирование навыков вычисления производных функций по определению производной Время выполнения: 2 часа. Требования к выполнению практической работы: 1.Ответить на теоретические вопросы. 2.Оформить задания в тетради для практических работ. Производной функции в точке (производной первого порядка) называется предел отношения приращения функции к приращению аргумента , когда последнее стремится к нулю: . Если этот предел конечен, то функция называется дифференцируемой в точке ; в противном случае (то есть если он не существует или равен бесконечности) – не дифференцируемой. В том случае, когда предел есть бесконечность, говорят, что функция имеет в точке бесконечную производную. Дифференциалом функции (дифференциалом первого порядка) называется главная часть ее приращения, пропорциональная приращению независимой переменной . Дифференциал независимой переменной равен ее приращению : . Дифференциал любой дифференцируемой функции равен произведению ее производной на дифференциал независимой переменной: . (10.1) Соотношение (10.1) остается в силе и тогда, когда есть функция другого аргумента – в этом заключается инвариантность формы первого дифференциала. Из соотношения (10.1) получаем , то есть производная первого порядка функции равна отношению первого дифференциала функции к дифференциалу ее аргумента.
Дата добавления: 2015-03-31; Просмотров: 415; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |