КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнений
Численное решение обыкновенных дифференциальных Многие задачи физики, химии, экологии, строительной механики и других разделов науки и техники при их математическом моделировании сводятся к дифференциальным уравнениям. Поэтому решение дифференциальных уравнений является одной из важнейших математических задач. Среди множества численных методов решения дифференциальных уравнений наиболее простые – это явные одношаговые методы. К ним относятся методы Рунге-Кутта различных порядков. Требуется найти функцию у = у (х), удовлетворяющую уравнению (3.3) и принимающую при х = х 0 заданное значение у 0: . (3.4) При этом решение необходимо получить в интервале х 0 £ х £ х к. Из теории дифференциальных уравнений известно, что решение у (х) задачи Коши (3.3), (3.4) существует, единственно и является гладкой функцией, если правая часть F (x, y) удовлетворяет некоторым условиям гладкости. Численное решение задачи Коши методом Рунге-Кутта 4-го порядка заключается в следующем. На заданном интервале [ х 0, х к] выбираются узловые точки. Значение решения в нулевой точке известно у (х 0) = у 0. В следующей точке у (х 1) определяется по формуле , (3.5) здесь (3.6) т. е. данный вариант метода Рунге-Кутта требует на каждом шаге четырехкратного вычисления правой части уравнения (3.3). Mathcad располагает обширным набором функций, позволяющих успешно решать обыкновенные дифференциальные уравнения и их системы.
Пример. Решить задачу Коши . (3.7) Точное решение . Выполним решение данной задачи с помощью функции Odesolve. Текст документа MathCAD.
Как следует из результатов численное решение практически совпадает с точным. Варианты заданий. Построить графики и вывести в виде таблицы приближенное решение задачи Коши на интервале [0; 1] с помощью функции Odesolve при количестве шагов N=10. Данные взять из таблицы 3.6. Таблица 3.6
Дата добавления: 2015-05-08; Просмотров: 442; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |