Рассмотрим некоторое тело и вычислим его объем. Допустим, что известны площади сечений этого тела плоскостями, перпендикулярными оси Ох. С изменением х площадь сечения также будет изменяться, т. е. являться некоторой функцией х. Обозначим эту функцию через S(x) и будем считать ее непрерывной функцией на отрезке [a, b]. Тогда объем тела
В частном случае, когда тело образовано вращением вокруг оси Ox и криволинейной трапеции, заданной непрерывной функцией , объем тела вращения вычисляется по формуле
(3)
Если криволинейная трапеция вращает вокруг оси Oy, то объем тела вращения
(4)
Пример: Вычислить объем шара радиуса R.
Решение:
Шар радиуса R получается вращением полуокружности вокруг оси Ox, поэтому его объем V можно найти по формуле (3). Используя симметрию данного шара относительно оси Oy, находим
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление