Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сложение матриц




Сложение матриц производится с матрицами одного порядка.

Определение: Если А= , В=, то матрицей А+В будет матрица , а матрицей матрица .

Пример 5: А=; В=.

Тогда А+В=; 2А=.

 

 

Свойства сложения матриц и умножения матрицы на число:

1. А+В=В+А;

2. (А+В)+С=А+(В+С);

3. Матрица, состоящая из одних нулей, называется нулевой матрицей,

тогда А+0=А ;

4. А (–А) | А+(–А)=0;

Матрица «–А» называется матрицей, противоположной матрице А. Она получается из матрицы А заменой знаков во всех её элементах на противоположные.

По определению, разностью матриц А и В является матрица А–В=А+(–В).

5. (А+В)=А+В;

6. ;

7.;

8.;

9. Транспонирование суммы равно сумме транспонирований: (А+В) ;

10.;

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 361; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.